-
Notifications
You must be signed in to change notification settings - Fork 2
/
40A05-CooperativeAndNoncooperativeEllipticSystems1.tex
56 lines (47 loc) · 1.93 KB
/
40A05-CooperativeAndNoncooperativeEllipticSystems1.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
\documentclass[12pt]{article}
\usepackage{pmmeta}
\pmcanonicalname{CooperativeAndNoncooperativeEllipticSystems1}
\pmcreated{2013-03-11 19:28:25}
\pmmodified{2013-03-11 19:28:25}
\pmowner{linor}{11198}
\pmmodifier{}{0}
\pmtitle{Cooperative and noncooperative elliptic systems}
\pmrecord{1}{50087}
\pmprivacy{1}
\pmauthor{linor}{0}
\pmtype{Definition}
\endmetadata
%none for now
\begin{document}
\documentclass[12pt,leqno]{article}
\usepackage{amssymb}
\usepackage{color}
\newcommand{\be}{\begin{equation}}
\newcommand{\ee}{\end{equation}}
\newcommand{\dk}{d\sigma_{\xi}}
\newcommand{\dx}{d\sigma_{x}}
\newcommand{\nd}{\frac{ \partial}{ \partial n}}
\newcommand{\ndk}{\disfrac{\textstyle \partial}{\textstyle \partial n_{ \xi}}}
\newcommand{\ndx}{\disfrac{\textstyle \partial}{\textstyle \partial n_{ x}}}
\newcommand{\ik}{\int_{ \Gamma}}
\newcommand{\ts}{\textstyle}
\begin{document}
Cooperative (+) and noncooperative (-) elliptic systems are of the
form
$$
(P^{\pm}) \left \{ \begin{array}{ll}
-\Delta u=\lambda u { \pm} \delta v + G_u(x; u,v), &\, x\in \Omega \nonumber \\
-\Delta v= \delta u + \gamma v {\pm} G_v(x; u,v), &\, x\in \Omega\\
u=v=0 \; \mbox{or} \;
\frac{\partial u}{\partial n}= \frac{\partial v}{\partial n}=0
&\, x\in \partial \Omega
\end{array} \right.
$$
where $\Omega\subset {\mathbb R}^N (N\ge 1)$ is an open bounded domain,
$\lambda, \gamma, \delta$ are real parameters, $G(x; u,v)\in \mathcal{C}^{1}(\overline{\Omega} \times
\mathbb{R}^2; \mathbb{R})$ in the variables $(u,v) \in \mathbb{R}^2$ with
$\nabla G =(G_u, G_v)$. $P^+$ and $P^-$ are called cooperative and noncooperative, respectively. In addition, $\delta$ is assumed to
be positive for the noncooperative case. Note that systems $(P^{\pm})$ are closely related to reaction-diffusion systems arising in various chemical/physical and biological phenomena.
\end{document}
%%%%%
\end{document}