-
Notifications
You must be signed in to change notification settings - Fork 2
/
40-00-TrickToSumAllTheReciprocalTriangularNumbers.tex
66 lines (55 loc) · 2.16 KB
/
40-00-TrickToSumAllTheReciprocalTriangularNumbers.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
\documentclass[12pt]{article}
\usepackage{pmmeta}
\pmcanonicalname{TrickToSumAllTheReciprocalTriangularNumbers}
\pmcreated{2013-03-22 18:58:21}
\pmmodified{2013-03-22 18:58:21}
\pmowner{juanman}{12619}
\pmmodifier{juanman}{12619}
\pmtitle{trick to sum all the reciprocal triangular numbers}
\pmrecord{6}{41834}
\pmprivacy{1}
\pmauthor{juanman}{12619}
\pmtype{Result}
\pmcomment{trigger rebuild}
\pmclassification{msc}{40-00}
\pmclassification{msc}{11A99}
%\pmkeywords{sum of reciprocals}
\pmrelated{TriangularNumbers}
\endmetadata
% this is the default PlanetMath preamble. as your knowledge
% of TeX increases, you will probably want to edit this, but
% it should be fine as is for beginners.
% almost certainly you want these
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage{amsfonts}
% used for TeXing text within eps files
%\usepackage{psfrag}
% need this for including graphics (\includegraphics)
%\usepackage{graphicx}
% for neatly defining theorems and propositions
%\usepackage{amsthm}
% making logically defined graphics
%%%\usepackage{xypic}
% there are many more packages, add them here as you need them
% define commands here
\begin{document}
The following trick to sum all the reciprocals of the triangular numbers is funny:
\begin{eqnarray*}
\sigma&=&1 + \frac{1}{3} + \frac{1}{6} + \frac{1}{10} + \frac{1}{15} + \frac{1}{21} +
\frac{1}{28} + \frac{1}{36} + \frac{1}{45} + \frac{1}{55} + \frac{1}{66} +
\frac{1}{78} +...\\
&=&1 + \left(\frac{1}{3} + \frac{1}{6}\right)+\left( \frac{1}{10} + \frac{1}{15}\right) +
\left(\frac{1}{21} + \frac{1}{28}\right) + \left(\frac{1}{36} + \frac{1}{45}\right) +\left( \frac{1}{55} +
\frac{1}{66}\right) +...\\
&=&1 + \frac{1}{2} + \frac{1}{2}\cdot\frac{1}{3} + \frac{1}{2}\cdot\frac{1}{6} + \frac{1}{2}\cdot\frac{1}{10}
+ \frac{1}{2}\cdot\frac{1}{15} +... \\
&=&1 + \frac{1}{2}\left( 1 + \frac{1}{3} + \frac{1}{6} + \frac{1}{10} + \frac{1}{15} +...\right)
\end{eqnarray*}
which implies $\sigma=1+\sigma/2$ and hence
$$1 + \frac{1}{3} + \frac{1}{6} + \frac{1}{10} + \frac{1}{15} + \frac{1}{21} +
\frac{1}{28} + \frac{1}{36} + \frac{1}{45} + \frac{1}{55} + \frac{1}{66} +
\frac{1}{78} +...=2$$
%%%%%
%%%%%
\end{document}