-
Notifications
You must be signed in to change notification settings - Fork 2
/
40-00-RealPartSeriesAndImaginaryPartSeries.tex
91 lines (75 loc) · 3.73 KB
/
40-00-RealPartSeriesAndImaginaryPartSeries.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
\documentclass[12pt]{article}
\usepackage{pmmeta}
\pmcanonicalname{RealPartSeriesAndImaginaryPartSeries}
\pmcreated{2013-03-22 17:28:08}
\pmmodified{2013-03-22 17:28:08}
\pmowner{pahio}{2872}
\pmmodifier{pahio}{2872}
\pmtitle{real part series and imaginary part series}
\pmrecord{10}{39854}
\pmprivacy{1}
\pmauthor{pahio}{2872}
\pmtype{Theorem}
\pmcomment{trigger rebuild}
\pmclassification{msc}{40-00}
%\pmkeywords{real part}
%\pmkeywords{imaginary part}
\pmrelated{SumOfSeries}
\pmrelated{ModulusOfComplexNumber}
\pmrelated{AbsoluteConvergenceTheorem}
\pmrelated{RealAndImaginaryPartsOfContourIntegral}
\endmetadata
% this is the default PlanetMath preamble. as your knowledge
% of TeX increases, you will probably want to edit this, but
% it should be fine as is for beginners.
% almost certainly you want these
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage{amsfonts}
% used for TeXing text within eps files
%\usepackage{psfrag}
% need this for including graphics (\includegraphics)
%\usepackage{graphicx}
% for neatly defining theorems and propositions
\usepackage{amsthm}
% making logically defined graphics
%%%\usepackage{xypic}
% there are many more packages, add them here as you need them
% define commands here
\theoremstyle{definition}
\newtheorem*{thmplain}{Theorem}
\begin{document}
\PMlinkescapeword{terms}
\textbf{Theorem 1.} Given the series
\begin{align}
z_1+z_2+z_3+\ldots
\end{align}
with the real parts of its terms\, $\Re{z_n} = a_n$\, and the imaginary parts of its terms\, $\Im{z_n} = b_n$\, ($n = 1,\,2,\,3,\,\ldots$). If the series (1) converges and its sum is $A+iB$, where $A$ and $B$ are real, then also the series
$$a_1+a_2+a_3+\ldots\;\;\;\mbox{and}\;\;\;b_1+b_2+b_3+\ldots$$
converge and their sums are $A$ and $B$, respectively. The converse is valid as well.\\
{\em Proof.} Let $\varepsilon$ be an arbitrary positive number. Denote the partial sum of (1) by
$$S_n = z_1+\ldots+z_n = (a_1+ib_1)+\ldots+(a_n+ib_n) = (a_1+\ldots+a_n)+i(b_1+\ldots+b_n) := A_n+iB_n$$
($n = 1,\,2,\,3,\,\ldots$). When (1) converges to the sum $A+iB$, then there is a number $n_\varepsilon$ such that\, for any integer \,$n > n_\varepsilon$\, we have
$$|(A_n-A)+i(B_n-B)| = |(A_n+iB_n)-(A+iB)| < \varepsilon.$$
But a complex number is always absolutely at least equal to the real part (see the inequalities in modulus of complex number), and therefore\, $|A_n-A| \leqq |(A_n-A)+i(B_n-B)| < \varepsilon$, similarly\, $|B_n-B| \leqq |(A_n-A)+i(B_n-B)| < \varepsilon$\, as soon as\, $n > n_\varepsilon$.\, Hence,\, $A_n \to A$\, and\, $B_n \to B$\, as\, $n \to \infty$.\, This means the convergences
$$a_1+a_2+a_3+\ldots = A\;\;\;\mbox{and}\;\;\;b_1+b_2+b_3+\ldots = B,$$
Q.E.D. The converse part is straightforward.\\
\textbf{Theorem 2.} Notations same as in the preceding theorem. The series
$$|z_1|+|z_2|+|z_3|+\ldots$$
converges if and only if the series
$$a_1+a_2+a_3+\ldots\;\;\;\mbox{and}\;\;\;b_1+b_2+b_3+\ldots$$
\PMlinkname{converge absolutely}{AbsoluteConvergence}.\\
{\em Proof.} Use the inequalities
$$0 \leqq |a_n| \leqq |z_n|,\quad 0 \leqq |b_n| \leqq |z_n|$$
and
$$0 \leqq |z_n| \leqq |a_n|+|b_n|$$
for using the comparison test.\\
\textbf{Theorem 3.} If the series $\displaystyle\sum_{n=1}^\infty|z_n|$ converges, then also the series
$\displaystyle\sum_{n=1}^\infty z_n$ converges and we have
$$\left|\sum_{n=1}^\infty z_n\right| \leqq \sum_{n=1}^\infty|z_n|.$$
{\em Proof.} By theorem 2, the convergence of $\sum|z_n|$ implies the convergence of $\sum a_n$ and $\sum b_n$, which, by theorem 1, in turn imply the convergence of $\sum z_n$ . Since for every $n$ the triangle inequality guarantees the inequality
$$\left|\sum_{j=1}^n z_j\right| \leqq \sum_{j=1}^n|z_j|,$$
then we must have the asserted limit inequality, too.
%%%%%
%%%%%
\end{document}