-
Notifications
You must be signed in to change notification settings - Fork 2
/
40-00-ProofOfLimitComparisonTest.tex
66 lines (51 loc) · 2.76 KB
/
40-00-ProofOfLimitComparisonTest.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
\documentclass[12pt]{article}
\usepackage{pmmeta}
\pmcanonicalname{ProofOfLimitComparisonTest}
\pmcreated{2013-03-22 15:35:54}
\pmmodified{2013-03-22 15:35:54}
\pmowner{cvalente}{11260}
\pmmodifier{cvalente}{11260}
\pmtitle{proof of limit comparison test}
\pmrecord{4}{37513}
\pmprivacy{1}
\pmauthor{cvalente}{11260}
\pmtype{Proof}
\pmcomment{trigger rebuild}
\pmclassification{msc}{40-00}
%\pmkeywords{series}
%\pmkeywords{comparisson test}
%\pmkeywords{limit}
%\pmkeywords{finite}
%\pmkeywords{convergence}
\endmetadata
% this is the default PlanetMath preamble. as your knowledge
% of TeX increases, you will probably want to edit this, but
% it should be fine as is for beginners.
% almost certainly you want these
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage{amsfonts}
% used for TeXing text within eps files
%\usepackage{psfrag}
% need this for including graphics (\includegraphics)
%\usepackage{graphicx}
% for neatly defining theorems and propositions
%\usepackage{amsthm}
% making logically defined graphics
%%%\usepackage{xypic}
% there are many more packages, add them here as you need them
% define commands here
\begin{document}
The main theorem we will use is the comparison test, which basically states that if $a_n>0$, $b_n>0$ and there is an $N$ such that for all $n>N$, $a_n < b_n$ , then if $\sum_{i=1}^\infty b_n$ converges so will $\sum_{i=1}^\infty a_n$.
Suppose $\lim_{n\to \infty} \frac{a_n}{b_n} = L$ where $L$ can be a non negative real number or $+\infty$.
By definition, for $L$ finite, this means that for every $\epsilon>0$ there is a natural number $n_\epsilon$ such that for all $n > n_\epsilon$, $\left\| \frac{a_n}{b_n} -L \right \| < \epsilon$
To make matters more concrete choose $\epsilon = \frac{L}{2}$ and assume $L\ne0$ and finite.
$0< a_n < \frac{3L}{2} b_n $, for all $n > n_{\frac{L}{2}}$.
If $\sum_{i=1}^\infty b_n$ converges, so will $\sum_{i=1}^\infty \frac{3L}{2} b_n$ and thus by the comparison test, $\sum_{i=1}^\infty a_n$ will also be convergent.
For the reverse result, consider $\lim_{n \to \infty} \frac{b_n}{a_n} = \frac{1}{L}$, since if $L$ is finite so will $\frac{1}{L}$, applying the previous result we can say that if $\sum_{i=1}^\infty a_n$ converges so will $\sum_{i=1}^\infty b_n$
Consider the case $L=0$, clearly $L=0^+$ since both $a_n$ and $b_n$ are positive, this means that for all $\epsilon > 0$ there exists $n_\epsilon$ such that for all $n>n_\epsilon$, $0<a_n<\epsilon b_n$.
Considering $\epsilon=1$ we get the exact formulation of the comparison test, so if $\sum_{i=1}^\infty b_n$ converges so will $\sum_{i=1}^\infty a_n$.
For the case $L=+\infty$ just apply the result to $\lim_{n \to \infty} \frac{b_n}{a_n} = 0$ to conclude that if $\sum_{i=1}^\infty a_n$ converges so will $\sum_{i=1}^\infty b_n$
%%%%%
%%%%%
\end{document}