-
Notifications
You must be signed in to change notification settings - Fork 2
/
13A02-HomogeneousElementsOfAGradedRing.tex
86 lines (73 loc) · 2.82 KB
/
13A02-HomogeneousElementsOfAGradedRing.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
\documentclass[12pt]{article}
\usepackage{pmmeta}
\pmcanonicalname{HomogeneousElementsOfAGradedRing}
\pmcreated{2013-03-22 14:14:52}
\pmmodified{2013-03-22 14:14:52}
\pmowner{mathcam}{2727}
\pmmodifier{mathcam}{2727}
\pmtitle{homogeneous elements of a graded ring}
\pmrecord{6}{35694}
\pmprivacy{1}
\pmauthor{mathcam}{2727}
\pmtype{Definition}
\pmcomment{trigger rebuild}
\pmclassification{msc}{13A02}
\pmrelated{HomogeneousIdeal}
\pmdefines{homogeneous element}
\pmdefines{homogeneous degree}
\pmdefines{irrelevant ideal}
\pmdefines{homogeneous union}
\endmetadata
% this is the default PlanetMath preamble. as your knowledge
% of TeX increases, you will probably want to edit this, but
% it should be fine as is for beginners.
% almost certainly you want these
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{amsthm}
% used for TeXing text within eps files
%\usepackage{psfrag}
% need this for including graphics (\includegraphics)
%\usepackage{graphicx}
% for neatly defining theorems and propositions
%\usepackage{amsthm}
% making logically defined graphics
%%%\usepackage{xypic}
% there are many more packages, add them here as you need them
% define commands here
\newcommand{\mc}{\mathcal}
\newcommand{\mb}{\mathbb}
\newcommand{\mf}{\mathfrak}
\newcommand{\ol}{\overline}
\newcommand{\ra}{\rightarrow}
\newcommand{\la}{\leftarrow}
\newcommand{\La}{\Leftarrow}
\newcommand{\Ra}{\Rightarrow}
\newcommand{\nor}{\vartriangleleft}
\newcommand{\Gal}{\text{Gal}}
\newcommand{\GL}{\text{GL}}
\newcommand{\Z}{\mb{Z}}
\newcommand{\R}{\mb{R}}
\newcommand{\Q}{\mb{Q}}
\newcommand{\C}{\mb{C}}
\newcommand{\<}{\langle}
\renewcommand{\>}{\rangle}
\begin{document}
Let $k$ be a field, and let $R$ be a connected commutative $k$-algebra \PMlinkname{graded}{GradedAlgebra} by $\mb{N}^m$. Then via the grading, we can decompose $R$ into a direct sum of vector spaces: $R=\coprod_{\omega\in\mb{N}^m} R_\omega$, where $R_0=k$.
For an arbitrary ring element $x\in R$, we define the \emph{homogeneous degree} of $x$ to be the value $\omega$ such that $x\in R_\omega$, and we denote this by $\deg(x)=\omega$. (See also homogeneous ideal)
A set of some importance (ironically), is the \emph{irrelevant ideal} of $R$, denoted by $R^+$, and given by
\begin{align*}
R_+=\coprod_{\omega\neq 0}R_\omega.
\end{align*}
Finally, we often need to consider the elements of such a ring $R$ without using the grading, and we do this by looking at the \emph{homogeneous union} of $R$:
\begin{align*}
\mathcal{H}(R)=\bigcup_\omega R_\omega.
\end{align*}
In particular, in defining a homogeneous system of parameters, we are looking at elements of $\mathcal{H}(R_+)$.
\begin{thebibliography}{9}
\bibitem{Stan} Richard P. Stanley, {\em Combinatorics and Commutative Algebra}, Second edition, Birkhauser Press. Boston, MA. 1986.
\end{thebibliography}
%%%%%
%%%%%
\end{document}