-
Notifications
You must be signed in to change notification settings - Fork 12
/
11-00-IndexOfAnIntegerWithRespectToAPrimitiveRoot.tex
66 lines (56 loc) · 1.99 KB
/
11-00-IndexOfAnIntegerWithRespectToAPrimitiveRoot.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
\documentclass[12pt]{article}
\usepackage{pmmeta}
\pmcanonicalname{IndexOfAnIntegerWithRespectToAPrimitiveRoot}
\pmcreated{2013-03-22 16:20:50}
\pmmodified{2013-03-22 16:20:50}
\pmowner{alozano}{2414}
\pmmodifier{alozano}{2414}
\pmtitle{index of an integer with respect to a primitive root}
\pmrecord{4}{38480}
\pmprivacy{1}
\pmauthor{alozano}{2414}
\pmtype{Definition}
\pmcomment{trigger rebuild}
\pmclassification{msc}{11-00}
\endmetadata
% this is the default PlanetMath preamble. as your knowledge
% of TeX increases, you will probably want to edit this, but
% it should be fine as is for beginners.
% almost certainly you want these
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage{amsthm}
\usepackage{amsfonts}
% used for TeXing text within eps files
%\usepackage{psfrag}
% need this for including graphics (\includegraphics)
%\usepackage{graphicx}
% for neatly defining theorems and propositions
%\usepackage{amsthm}
% making logically defined graphics
%%%\usepackage{xypic}
% there are many more packages, add them here as you need them
% define commands here
\newtheorem{thm}{Theorem}
\newtheorem*{defn}{Definition}
\newtheorem{prop}{Proposition}
\newtheorem{lemma}{Lemma}
\newtheorem{cor}{Corollary}
\theoremstyle{definition}
\newtheorem{exa}{Example}
% Some sets
\newcommand{\Nats}{\mathbb{N}}
\newcommand{\Ints}{\mathbb{Z}}
\newcommand{\Reals}{\mathbb{R}}
\newcommand{\Complex}{\mathbb{C}}
\newcommand{\Rats}{\mathbb{Q}}
\newcommand{\Gal}{\operatorname{Gal}}
\newcommand{\Cl}{\operatorname{Cl}}
\begin{document}
\begin{defn}
Let $m>1$ be an integer such that the integer $g$ is a primitive root for $m$. Suppose $a$ is another integer relatively prime to $g$. The index of $a$ (to base $g$) is the smallest positive integer $n$ such that $g^n\equiv a \mod m$, and it is denoted by $\operatorname{ind} a$ or $\operatorname{ind}_g a$.
\end{defn}
If $m$ has a primitive root the index with respect to a primitive root is a very useful tool to solve polynomial congruences modulo $m$.
%%%%%
%%%%%
\end{document}