-
Notifications
You must be signed in to change notification settings - Fork 7
/
08B99-IdentityInAClass.tex
74 lines (69 loc) · 3.02 KB
/
08B99-IdentityInAClass.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
\documentclass[12pt]{article}
\usepackage{pmmeta}
\pmcanonicalname{IdentityInAClass}
\pmcreated{2013-03-22 16:48:05}
\pmmodified{2013-03-22 16:48:05}
\pmowner{CWoo}{3771}
\pmmodifier{CWoo}{3771}
\pmtitle{identity in a class}
\pmrecord{7}{39035}
\pmprivacy{1}
\pmauthor{CWoo}{3771}
\pmtype{Definition}
\pmcomment{trigger rebuild}
\pmclassification{msc}{08B99}
\pmdefines{identity}
\endmetadata
\usepackage{amssymb,amscd}
\usepackage{amsmath}
\usepackage{amsfonts}
% used for TeXing text within eps files
%\usepackage{psfrag}
% need this for including graphics (\includegraphics)
%\usepackage{graphicx}
% for neatly defining theorems and propositions
\usepackage{amsthm}
% making logically defined graphics
%%\usepackage{xypic}
\usepackage{pst-plot}
\usepackage{psfrag}
% define commands here
\newtheorem{prop}{Proposition}
\newtheorem{thm}{Theorem}
\newtheorem{ex}{Example}
\newcommand{\real}{\mathbb{R}}
\begin{document}
Let $K$ be a class of algebraic systems of the same type. An \emph{identity} on $K$ is an expression of the form $p=q$, where $p$ and $q$ are $n$-ary polynomial symbols of $K$, such that, for every algebra $A\in K$, we have $$p_A(a_1,\ldots, a_n)=q_A(a_1,\ldots,a_n)\qquad\mbox{ for all }a_1,\ldots, a_n\in A,$$
where $p_A$ and $q_A$ denote the induced polynomials of $A$ by the corresponding polynomial symbols. An identity is also known sometimes as an \emph{equation}.
\textbf{Examples}.
\begin{itemize}
\item Let $K$ be a class of algebras of the type $\lbrace e, ^{-1}, \cdot \rbrace$, where $e$ is nullary, $^{-1}$ unary, and $\cdot$ binary. Then
\begin{enumerate}
\item $x\cdot e=x$,
\item $e\cdot x=e$,
\item $(x\cdot y)\cdot z=x\cdot (y\cdot z)$,
\item $x\cdot x^{-1}=e$,
\item $x^{-1}\cdot x=e$, and
\item $x\cdot y= y\cdot x$.
\end{enumerate}
can all be considered identities on $K$. For example, in the fourth equation, the right hand side is the unary polynomial $q(x)=e$. Any algebraic system satisfying the first three identities is a monoid. If a monoid also satisfies identities 4 and 5, then it is a group. A group satisfying the last identity is an abelian group.
\item Let $L$ be a class of algebras of the type $\lbrace \vee, \wedge \rbrace$ where $\vee$ and $\wedge$ are both binary. Consider the following possible identities
\begin{enumerate}
\item $x\vee x=x$,
\item $x\vee y=y\vee x$,
\item $x\vee (y\vee z)=(x\vee y)\vee z$,
\item $x\wedge x=x$,
\item $x\wedge y=y\wedge x$,
\item $x\wedge (y\wedge z)=(x\wedge y)\wedge z$,
\item $x\vee (y\wedge x)=x$,
\item $x\wedge (y\vee x)=x$,
\item $x\vee (y\wedge (x\vee z))=(x\vee y)\wedge (x\vee z)$,
\item $x\wedge (y\vee (x\wedge z))=(x\wedge y)\vee (x\wedge z)$,
\item $x\vee (y\wedge z)=(x\vee y)\wedge (x\vee z)$, and
\item $x\wedge (y\vee z)=(x\wedge y)\vee (x\wedge z)$.
\end{enumerate}
If algebras of $K$ satisfy identities 1-8, then $K$ is a class of lattices. If 9 and 10 are satisfied as well, then $K$ is a class of modular lattices. If every identity is satisified by algebras of $K$, then $K$ is a class of distributive lattices.
\end{itemize}
%%%%%
%%%%%
\end{document}