-
Notifications
You must be signed in to change notification settings - Fork 7
/
08A99-FilteredAlgebra.tex
145 lines (127 loc) · 4.05 KB
/
08A99-FilteredAlgebra.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
\documentclass[12pt]{article}
\usepackage{pmmeta}
\pmcanonicalname{FilteredAlgebra}
\pmcreated{2013-03-22 13:23:55}
\pmmodified{2013-03-22 13:23:55}
\pmowner{Dr_Absentius}{537}
\pmmodifier{Dr_Absentius}{537}
\pmtitle{filtered algebra}
\pmrecord{11}{33938}
\pmprivacy{1}
\pmauthor{Dr_Absentius}{537}
\pmtype{Definition}
\pmcomment{trigger rebuild}
\pmclassification{msc}{08A99}
\endmetadata
%\documentclass{amsart}
\usepackage{amsmath}
%\usepackage[all,poly,knot,dvips]{xy}
%\usepackage{pstricks,pst-poly,pst-node,pstcol}
\usepackage{amssymb,latexsym}
\usepackage{amsthm,latexsym}
\usepackage{eucal,latexsym}
% THEOREM Environments --------------------------------------------------
\newtheorem{thm}{Theorem}
\newtheorem*{mainthm}{Main~Theorem}
\newtheorem{cor}[thm]{Corollary}
\newtheorem{lem}[thm]{Lemma}
\newtheorem{prop}[thm]{Proposition}
\newtheorem{claim}[thm]{Claim}
\theoremstyle{definition}
\newtheorem{defn}[thm]{Definition}
\theoremstyle{remark}
\newtheorem{rem}[thm]{Remark}
\numberwithin{equation}{subsection}
%--------------------- Greek letters, etc -------------------------
\newcommand{\CA}{\mathcal{A}}
\newcommand{\CC}{\mathcal{C}}
\newcommand{\CM}{\mathcal{M}}
\newcommand{\CP}{\mathcal{P}}
\newcommand{\CS}{\mathcal{S}}
\newcommand{\BC}{\mathbb{C}}
\newcommand{\BN}{\mathbb{N}}
\newcommand{\BR}{\mathbb{R}}
\newcommand{\BZ}{\mathbb{Z}}
\newcommand{\FF}{\mathfrak{F}}
\newcommand{\FL}{\mathfrak{L}}
\newcommand{\FM}{\mathfrak{M}}
\newcommand{\Ga}{\alpha}
\newcommand{\Gb}{\beta}
\newcommand{\Gg}{\gamma}
\newcommand{\GG}{\Gamma}
\newcommand{\Gd}{\delta}
\newcommand{\GD}{\Delta}
\newcommand{\Ge}{\varepsilon}
\newcommand{\Gz}{\zeta}
\newcommand{\Gh}{\eta}
\newcommand{\Gq}{\theta}
\newcommand{\GQ}{\Theta}
\newcommand{\Gi}{\iota}
\newcommand{\Gk}{\kappa}
\newcommand{\Gl}{\lambda}
\newcommand{\GL}{\Lamda}
\newcommand{\Gm}{\mu}
\newcommand{\Gn}{\nu}
\newcommand{\Gx}{\xi}
\newcommand{\GX}{\Xi}
\newcommand{\Gp}{\pi}
\newcommand{\GP}{\Pi}
\newcommand{\Gr}{\rho}
\newcommand{\Gs}{\sigma}
\newcommand{\GS}{\Sigma}
\newcommand{\Gt}{\tau}
\newcommand{\Gu}{\upsilon}
\newcommand{\GU}{\Upsilon}
\newcommand{\Gf}{\varphi}
\newcommand{\GF}{\Phi}
\newcommand{\Gc}{\chi}
\newcommand{\Gy}{\psi}
\newcommand{\GY}{\Psi}
\newcommand{\Gw}{\omega}
\newcommand{\GW}{\Omega}
\newcommand{\Gee}{\epsilon}
\newcommand{\Gpp}{\varpi}
\newcommand{\Grr}{\varrho}
\newcommand{\Gff}{\phi}
\newcommand{\Gss}{\varsigma}
\def\co{\colon\thinspace}
\begin{document}
\begin{defn}
A filtered algebra over the field $k$ is an algebra $(A,\cdot)$ over $k$
which is endowed with a filtration $\mathcal{F}=\{F_i\}_{i\in \mathbb{N}}$
by subspaces, compatible with the multiplication in
the following sense
$$\forall m,n \in \mathbb{N},\qquad F_m\cdot F_n\subset F_{n+m}.$$
\end{defn}
A special case of filtered algebra is a graded algebra. In general there is
the following construction that produces a graded algebra out of a filtered
algebra.
\begin{defn}
Let $(A,\cdot,\mathcal{F})$ be a filtered algebra then the \emph{associated \PMlinkid{graded algebra}{3071}} $ \mathcal{G}(A)$ is defined as follows:
\begin{itemize}
\item As a vector space
$$ \mathcal{G}(A)=\bigoplus_{n\in \mathbb{N}}G_n\,, $$
where,
$$G_0=F_0,\quad \text{and } \forall n>0, \quad G_n=F_n/F_{n-1}\,,$$
\item the multiplication is defined by
$$(x+F_{n})(y+F_{m})=x\cdot y+F_{n+m}$$
\end{itemize}
\end{defn}
\begin{thm}
The multiplication is well defined and endows $\mathcal{G}(A)$ with the
\PMlinkescapetext{structure} of a graded algebra, with gradation
$\{G_n\}_{n \in \mathbb{N}}$.
Furthermore if $A$ is associative then so is $\mathcal{G}(A)$.
\end{thm}
An example of a filtered algebra is the Clifford algebra $\mathrm{Cliff}(V,q)$
of a vector space $V$ endowed with a quadratic form $q$. The associated
graded algebra is $\bigwedge V$, the exterior algebra of $V$.
As algebras
$A$ and $\mathcal{G}(A)$ are distinct (with the exception of the trivial
case that $A$ is graded) but as vector spaces they are isomorphic.
\begin{thm}
The underlying vector spaces of $A$ and $\mathcal{G}(A)$ are isomorphic.
\end{thm}
%%%%%
%%%%%
\end{document}