-
Notifications
You must be signed in to change notification settings - Fork 6
/
05B25-DeBruijnErdHosTheorem.tex
512 lines (412 loc) · 16.2 KB
/
05B25-DeBruijnErdHosTheorem.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
\documentclass[12pt]{article}
\usepackage{pmmeta}
\pmcanonicalname{DeBruijnErdHosTheorem}
\pmcreated{2013-03-22 15:11:21}
\pmmodified{2013-03-22 15:11:21}
\pmowner{marijke}{8873}
\pmmodifier{marijke}{8873}
\pmtitle{De Bruijn--Erd\H{o}s theorem}
\pmrecord{7}{36945}
\pmprivacy{1}
\pmauthor{marijke}{8873}
\pmtype{Theorem}
\pmcomment{trigger rebuild}
\pmclassification{msc}{05B25}
%\pmkeywords{incidence}
%\pmkeywords{finite geometry}
\pmrelated{FiniteProjectivePlane4}
\pmrelated{IncidenceStructures}
\pmrelated{Geometry}
\pmrelated{LinearSpace2}
\endmetadata
\usepackage{amssymb}
% \usepackage{amsmath}
% \usepackage{amsfonts}
% used for TeXing text within eps files
%\usepackage{psfrag}
% need this for including graphics (\includegraphics)
%\usepackage{graphicx}
% for neatly defining theorems and propositions
%\usepackage{amsthm}
% making logically defined graphics
%%%\usepackage{xypic}
% there are many more packages, add them here as you need them
% define commands here %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% portions from
% makra.sty 1989-2005 by Marijke van Gans %
% ^ ^
\catcode`\@=11 % o o
% ->*<-
% ~
%%%% CHARS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% code char frees for
\let\Para\S % \Para ÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃç \S \scriptstyle
\let\Pilcrow\P % \Pilcrow ÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃö \P
\mathchardef\pilcrow="227B
\mathchardef\lt="313C % \lt < < bra
\mathchardef\gt="313E % \gt > > ket
\let\bs\backslash % \bs \
\let\us\_ % \us _ \_ ...
%%%% DIACRITICS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%let\udot\d % under-dot (text mode), frees \d
\let\odot\. % over-dot (text mode), frees \.
%let\hacek\v % hacek (text mode), frees \v
%let\makron\= % makron (text mode), frees \=
%let\tilda\~ % tilde (text mode), frees \~
\let\uml\" % umlaut (text mode), frees \"
%def\ij/{i{\kern-.07em}j}
%def\trema#1{\discretionary{-}{#1}{\uml #1}}
%%%% amssymb %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\let\le\leqslant
\let\ge\geqslant
%let\prece\preceqslant
%let\succe\succeqslant
%%%% USEFUL MISC %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%def\C++{C$^{_{++}}$}
%let\writelog\wlog
%def\wl@g/{{\sc wlog}}
%def\wlog{\@ifnextchar/{\wl@g}{\writelog}}
%def\org#1{\lower1.2pt\hbox{#1}}
% chem struct formulae: \bs, --- / \org{C} etc.
%%%% USEFUL INTERNAL LaTeX STUFF %%%%%%%%%%%%%%%%%%%%%%%%
%let\Ifnextchar=\@ifnextchar
%let\Ifstar=\@ifstar
%def\currsize{\@currsize}
%%%% KERNING, SPACING, BREAKING %%%%%%%%%%%%%%%%%%%%%%%%%
\def\comma{,\,\allowbreak}
%def\qqquad{\hskip3em\relax}
%def\qqqquad{\hskip4em\relax}
%def\qqqqquad{\hskip5em\relax}
%def\qqqqqquad{\hskip6em\relax}
%def\qqqqqqquad{\hskip7em\relax}
%def\qqqqqqqquad{\hskip8em\relax}
%%%% LAYOUT %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% COUNTERS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%let\addtoreset\@addtoreset
%{A}{B} adds A to list of counters reset to 0
% when B is \refstepcounter'ed (see latex.tex)
%
%def\numbernext#1#2{\setcounter{#1}{#2}\addtocounter{#1}{\m@ne}}
%%%% EQUATIONS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% LEMMATA %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% DISPLAY %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% MATH LAYOUT %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\let\D\displaystyle
\let\T\textstyle
\let\S\scriptstyle
\let\SS\scriptscriptstyle
% array:
%def\<#1:{\begin{array}{#1}}
%def\>{\end{array}}
% array using [ ] with rounded corners:
%def\[#1:{\left\lgroup\begin{array}{#1}}
%def\]{\end{array}\right\rgroup}
% array using ( ):
%def\(#1:{\left(\begin{array}{#1}}
%def\){\end{array}\right)}
%def\hh{\noalign{\vskip\doublerulesep}}
%%%% MATH SYMBOLS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%def\d{\mathord{\rm d}} % d as in dx
%def\e{{\rm e}} % e as in e^x
%def\Ell{\hbox{\it\char`\$}}
\def\sfmath#1{{\mathchoice%
{{\sf #1}}{{\sf #1}}{{\S\sf #1}}{{\SS\sf #1}}}}
\def\Stalkset#1{\sfmath{I\kern-.12em#1}}
\def\Bset{\Stalkset B}
\def\Nset{\Stalkset N}
\def\Rset{\Stalkset R}
\def\Hset{\Stalkset H}
\def\Fset{\Stalkset F}
\def\kset{\Stalkset k}
\def\In@set{\raise.14ex\hbox{\i}\kern-.237em\raise.43ex\hbox{\i}}
\def\Roundset#1{\sfmath{\kern.14em\In@set\kern-.4em#1}}
\def\Qset{\Roundset Q}
\def\Cset{\Roundset C}
\def\Oset{\Roundset O}
\def\Zset{\sfmath{Z\kern-.44emZ}}
% \frac overwrites LaTeX's one (use TeX \over instead)
%def\fraq#1#2{{}^{#1}\!/\!{}_{\,#2}}
\def\frac#1#2{\mathord{\mathchoice%
{\T{#1\over#2}}
{\T{#1\over#2}}
{\S{#1\over#2}}
{\SS{#1\over#2}}}}
%def\half{\frac12}
\mathcode`\<="4268 % < now is \langle, \lt is <
\mathcode`\>="5269 % > now is \rangle, \gt is >
%def\biggg#1{{\hbox{$\left#1\vbox %to20.5\p@{}\right.\n@space$}}}
%def\Biggg#1{{\hbox{$\left#1\vbox %to23.5\p@{}\right.\n@space$}}}
\let\epsi=\varepsilon
\def\omikron{o}
\def\Alpha{{\rm A}}
\def\Beta{{\rm B}}
\def\Epsilon{{\rm E}}
\def\Zeta{{\rm Z}}
\def\Eta{{\rm H}}
\def\Iota{{\rm I}}
\def\Kappa{{\rm K}}
\def\Mu{{\rm M}}
\def\Nu{{\rm N}}
\def\Omikron{{\rm O}}
\def\Rho{{\rm P}}
\def\Tau{{\rm T}}
\def\Ypsilon{{\rm Y}} % differs from \Upsilon
\def\Chi{{\rm X}}
%def\dg{^{\circ}} % degrees
%def\1{^{-1}} % inverse
\def\*#1{{\bf #1}} % boldface e.g. vector
%def\vi{\mathord{\hbox{\bf\i}}} % boldface vector \i
%def\vj{\mathord{\,\hbox{\bf\j}}} % boldface vector \j
%def\union{\mathbin\cup}
%def\isect{\mathbin\cap}
\let\so\Longrightarrow
\let\oso\Longleftrightarrow
\let\os\Longleftarrow
% := and :<=>
%def\isdef{\mathrel{\smash{\stackrel{\SS\rm def}{=}}}}
%def\iffdef{\mathrel{\smash{stackrel{\SS\rm def}{\oso}}}}
\def\isdef{\mathrel{\mathop{=}\limits^{\smash{\hbox{\tiny def}}}}}
%def\iffdef{\mathrel{\mathop{\oso}\limits^{\smash{\hbox{\tiny %def}}}}}
%def\tr{\mathop{\rm tr}} % tr[ace]
%def\ter#1{\mathop{^#1\rm ter}} % k-ter[minant]
%let\.=\cdot
%let\x=\times % ><ÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃ (direct product)
%def\qed{ ${\S\circ}\!{}^\circ\!{\S\circ}$}
%def\qed{\vrule height 6pt width 6pt depth 0pt}
%def\edots{\mathinner{\mkern1mu
% \raise7pt\vbox{\kern7pt\hbox{.}}\mkern1mu % .shorter
% \raise4pt\hbox{.}\mkern1mu % .
% \raise1pt\hbox{.}\mkern1mu}} % .
%def\fdots{\mathinner{\mkern1mu
% \raise7pt\vbox{\kern7pt\hbox{.}} % . ~45ÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃð
% \raise4pt\hbox{.} % .
% \raise1pt\hbox{.}\mkern1mu}} % .
\def\mod#1{\allowbreak \mkern 10mu({\rm mod}\,\,#1)}
% redefines TeX's one using less space
%def\int{\intop\displaylimits}
%def\oint{\ointop\displaylimits}
%def\intoi{\int_0^1}
%def\intall{\int_{-\infty}^\infty}
%def\su#1{\mathop{\sum\raise0.7pt\hbox{$\S\!\!\!\!\!#1\,$}}}
%let\frakR\Re
%let\frakI\Im
%def\Re{\mathop{\rm Re}\nolimits}
%def\Im{\mathop{\rm Im}\nolimits}
%def\conj#1{\overline{#1\vphantom1}}
%def\cj#1{\overline{#1\vphantom+}}
%def\forAll{\mathop\forall\limits}
%def\Exists{\mathop\exists\limits}
%%%% PICTURES %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\def\cent{\makebox(0,0)}
%def\node{\circle*4}
%def\nOde{\circle4}
%%%% REFERENCES %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%def\opcit{[{\it op.\,cit.}]}
\def\bitem#1{\bibitem[#1]{#1}}
\def\name#1{{\sc #1}}
\def\book#1{{\sl #1\/}}
\def\paper#1{``#1''}
\def\mag#1{{\it #1\/}}
\def\vol#1{{\bf #1}}
\def\isbn#1{{\small\tt ISBN\,\,#1}}
\def\seq#1{{\small\tt #1}}
%def\url<{\verb>}
%def\@cite#1#2{[{#1\if@tempswa\ #2\fi}]}
%%%% VERBATIM CODE %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%def\"{\verb"}
%%%% AD HOC %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% WORDS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \hyphenation{pre-sent pre-sents pre-sent-ed pre-sent-ing
% re-pre-sent re-pre-sents re-pre-sent-ed re-pre-sent-ing
% re-fer-ence re-fer-ences re-fer-enced re-fer-encing
% ge-o-met-ry re-la-ti-vi-ty Gauss-ian Gauss-ians
% Des-ar-gues-ian}
%def\oord/{o{\trema o}rdin\-ate}
% usage: C\oord/s, c\oord/.
% output: co\"ord... except when linebreak at co-ord...
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% ^ ^
\catcode`\@=12 % ` '
% ->*<-
% ~
\begin{document}
\PMlinkescapeword{collection}
\PMlinkescapephrase{finite plane}
\PMlinkescapeword{incident}
\PMlinkescapeword{order}
\PMlinkescapeword{satisfy}
\PMlinkescapeword{simple}
\PMlinkescapeword{structure}
\PMlinkescapeword{line}
\PMlinkescapeword{circle}
\subsection*{De Bruijn--Erd\H{o}s theorem}
Let $S$ be a set of $n\ne0$ `points', say $\{L_1,L_2,\dots L_n\}$, and
let $\Lambda_1$, $\Lambda_2$, \dots\ $\Lambda_\nu$ be $\nu$ different subsets
of $S$ of which any two have exactly one point in common. Now the {\bf De Bruijn--Erd\H{o}s theorem} says that $\nu\le n$, and that if $\nu=n$ then (up to renumbering) at least one of the following three must be true:
%
\begin{itemize}
\item $\Lambda_i=\{L_i,L_n\}$ for $i\ne n$, and $\Lambda_n=\{L_n\}$
\item $\Lambda_i=\{L_i,L_n\}$ for $i\ne n$, and $\Lambda_n=\{L_1,L_2,\dots
L_{n-1}\}$
\item $n$ is of the form $q^2+q+1$, each $\Lambda_i$ contains $q+1$ points,
and each point is contained in $q+1$ of the $\Lambda_i$
\end{itemize}
%
and we recognise the last case as \PMlinkid{finite projective planes}{6943} of order $q$. For $n=1$ ($q=0$) the first and last case overlap, and for $n=3$ ($q=1$) the last two cases do. The second case is also known as a near-pencil. The last two cases together are examples of linear spaces.
To exclude the first two cases one usually defines projective planes to satisfy some non-triviality conditions; unfortunately that also excludes projective planes of order 0~and~1.
%
\begin{center}
\begin{picture}(200,78)(-100,0)
\put(-122,+30){\begin{picture}(100,48)(0,0)
\put( 0,+32){\circle*{4}}
\put(-40, 0){\circle*{4}}
\put(-24, 0){\circle*{4}}
\put( -8, 0){\circle*{4}}
\put( +8, 0){\circle*{4}}
\put(+24, 0){\circle*{4}}
\put(+40, 0){\circle*{4}}
\put(-47, -5.6){\line(+5,+4){54}}
\put(-29.25,-7){\line(+3,+4){34.5}}
\put(-10, -8){\line(+1,+4){12}}
\put(+10, -8){\line(-1,+4){12}}
\put(+29.25,-7){\line(-3,+4){34.5}}
\put(+47,-5.6){\line(-5,+4){54}}
\put(-19,+32){\line(+1, 0){38}}
\end{picture}}
\put(+18,+30){\begin{picture}(100,48)(0,0)
\put( 0,+32){\circle*{4}}
\put(-40, 0){\circle*{4}}
\put(-24, 0){\circle*{4}}
\put( -8, 0){\circle*{4}}
\put( +8, 0){\circle*{4}}
\put(+24, 0){\circle*{4}}
\put(+40, 0){\circle*{4}}
\put(-47, -5.6){\line(+5,+4){54}}
\put(-29.25,-7){\line(+3,+4){34.5}}
\put(-10, -8){\line(+1,+4){12}}
\put(+10, -8){\line(-1,+4){12}}
\put(+29.25,-7){\line(-3,+4){34.5}}
\put(+47, -5.6){\line(-5,+4){54}}
\put(-49, 0){\line(+1, 0){98}}
\end{picture}}
\put(+148,+30){\begin{picture}(100,48)(0,0)
\put( 0,+12.6){\circle{25}}
\put(-24, 0){\circle*{4}}
\put(+24, 0){\circle*{4}}
\put( 0,+36){\circle*{4}}
\put( 0,+12){\circle*{4}}
\put( 0, 0){\circle*{4}}
\put(-12,+18){\circle*{4}}
\put(+12,+18){\circle*{4}}
\put(-31, 0){\line(+1, 0){62}}
\put(-28, -6){\line(+2,+3){32}}
\put(+28, -6){\line(-2,+3){32}}
\put(-30, -3){\line(+2,+1){48}}
\put(+30, -3){\line(-2,+1){48}}
\put( 0,+43){\line( 0,-1){50}}
\end{picture}}
\put(0,10){\cent[t]{\it The three cases of De\,Bruijn--Erd\H{o}s drawn for
$n=\nu=7$ ($q=2$)}}
\end{picture}
\end{center}
%
The formulation above was found in the literature \cite{Cam94}. Naturally, if
the $L_i$ are points we tend to interpret the subsets $\Lambda_\iota$
as lines. However, interpreted in this way the condition that every two
$\Lambda$ share an $L$ says rather more than is needed for the structure to
be a finite plane (\PMlinkid{linear space}{3509}) as it insists that no two lines are parallel. The absence of the dual condition, for two $L$ to share a $\Lambda$, actually means we have {\em too little\/} for the structure to be a finite plane (linear space), as for two points we may not have a line through them. And indeed, while the second and third cases are finite planes without parallel lines, the first case is not a plane.
\clearpage
\subsection*{Erd\H{o}s--De Bruijn theorem}
A dual formulation (which we could whimsically call the {\bf Erd\H{o}s--De
Bruijn Theorem}) remedies both under- and over-specification for a plane.
Indeed, the conditions are now exactly tailored to make the structure a finite
plane (with some parallel lines in the first of the three cases).
%
\begin{center}
\begin{picture}(200,78)(-100,-90)
\put(-122,-30){\begin{picture}(100,48)(0,0)
\put(-56, 0){\circle*{4}}
\put(-40, 0){\circle*{4}}
\put(-24, 0){\circle*{4}}
\put( -8, 0){\circle*{4}}
\put( +8, 0){\circle*{4}}
\put(+24, 0){\circle*{4}}
\put(+40, 0){\circle*{4}}
\put(-40, +8){\line( 0,-1){46}}
\put(-24, +8){\line( 0,-1){46}}
\put( -8, +8){\line( 0,-1){46}}
\put( +8, +8){\line( 0,-1){46}}
\put(+24, +8){\line( 0,-1){46}}
\put(+40, +8){\line( 0,-1){46}}
\put(-64, 0){\line(+1, 0){112}}
\end{picture}}
\put(+18,-30){\begin{picture}(100,48)(0,0)
\put( 0,-32){\circle*{4}}
\put(-40, 0){\circle*{4}}
\put(-24, 0){\circle*{4}}
\put( -8, 0){\circle*{4}}
\put( +8, 0){\circle*{4}}
\put(+24, 0){\circle*{4}}
\put(+40, 0){\circle*{4}}
\put(-47, +5.6){\line(+5,-4){54}}
\put(-29.25,+7){\line(+3,-4){34.5}}
\put(-10, +8){\line(+1,-4){12}}
\put(+10, +8){\line(-1,-4){12}}
\put(+29.25,+7){\line(-3,-4){34.5}}
\put(+47, +5.6){\line(-5,-4){54}}
\put(-49, 0){\line(+1, 0){98}}
\end{picture}}
\put(+148,-30){\begin{picture}(100,48)(0,0)
\put( 0,-12.6){\circle{25}}
\put(-24, 0){\circle*{4}}
\put(+24, 0){\circle*{4}}
\put( 0,-36){\circle*{4}}
\put( 0,-12){\circle*{4}}
\put( 0, 0){\circle*{4}}
\put(-12,-18){\circle*{4}}
\put(+12,-18){\circle*{4}}
\put(-31, 0){\line(+1, 0){62}}
\put(-28, +6){\line(+2,-3){32}}
\put(+28, +6){\line(-2,-3){32}}
\put(-30, +3){\line(+2,-1){48}}
\put(+30, +3){\line(-2,-1){48}}
\put( 0,-43){\line( 0,+1){50}}
\end{picture}}
\put(0,-80){\cent[t]{\it The three cases of Erd\H{o}s--De\,Bruijn drawn for
$\nu=n=7$ ($q=2$)}}
\end{picture}
\end{center}
%
Let $\Sigma$ be a set of $\nu\ne0$ `points', say $\{\Lambda_1,\Lambda_2,\dots
\Lambda_\nu\}$, and let $L_1$, $L_2$, \dots\ $L_n$ be $n$ subsets of $\Sigma$
(`lines') such that for any two points there is a unique $L_i$ that contains
them both. We must now be careful about the points (the former lines) being
``different'' (this was easier to formulate in the previous version, in which
form it was a {\em simple\/} incidence structure): this condition now takes the
form that no two points must have the same collection of lines that are
incident with them. Then $n\ge\nu$, and if $n=\nu$ then (up to renumbering)
at least one of the following three must be true:
%
\begin{itemize}
\item $L_i=\{\Lambda_i\}$ for $i\ne n$, and $L_n=\{\Lambda_1,\Lambda_2,\dots
\Lambda_n\}$
\item $L_i=\{\Lambda_i,\Lambda_n\}$ for $i\ne n$, and $L_n=\{\Lambda_1,\Lambda_2
\Lambda_{n-1}\}$
\item $n$ is of the form $q^2+q+1$, each $L_i$ contains $q+1$ points,
and each point is contained in $q+1$ of the $L_i$
\end{itemize}
%
For a proof of the theorem (in the former version) see e.g.\ Cameron \cite{Cam94}.
\clearpage
\raggedright
\begin{thebibliography}{MST73}
\bitem{Cam94} \name{Peter J.\,Cameron},
\book{Combinatorics: topics, techniques, algorithms},\\
Camb.~Univ.~Pr.~1994, \isbn{0\,521\,45761\,0}\\
{\tt\PMlinkexternal{http://www.maths.qmul.ac.uk/~pjc/comb/}{http://www.maths.qmul.ac.uk/~pjc/comb/}}
(solutions, errata \&c.)
\end{thebibliography}
%%%%%
%%%%%
\end{document}