-
Notifications
You must be signed in to change notification settings - Fork 6
/
05B20-ProofThatHadamardMatrixHasOrder1Or2Or4n.tex
83 lines (73 loc) · 2.15 KB
/
05B20-ProofThatHadamardMatrixHasOrder1Or2Or4n.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
\documentclass[12pt]{article}
\usepackage{pmmeta}
\pmcanonicalname{ProofThatHadamardMatrixHasOrder1Or2Or4n}
\pmcreated{2013-03-22 16:50:56}
\pmmodified{2013-03-22 16:50:56}
\pmowner{Mathprof}{13753}
\pmmodifier{Mathprof}{13753}
\pmtitle{proof that Hadamard matrix has order 1 or 2 or 4n}
\pmrecord{10}{39095}
\pmprivacy{1}
\pmauthor{Mathprof}{13753}
\pmtype{Proof}
\pmcomment{trigger rebuild}
\pmclassification{msc}{05B20}
\pmclassification{msc}{15-00}
\endmetadata
% this is the default PlanetMath preamble. as your knowledge
% of TeX increases, you will probably want to edit this, but
% it should be fine as is for beginners.
% almost certainly you want these
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage{amsfonts}
% used for TeXing text within eps files
%\usepackage{psfrag}
% need this for including graphics (\includegraphics)
%\usepackage{graphicx}
% for neatly defining theorems and propositions
%\usepackage{amsthm}
% making logically defined graphics
%%%\usepackage{xypic}
% there are many more packages, add them here as you need them
% define commands here
\begin{document}
Let $m$ be the order of a Hadamard matrix. The matrix $[1]$ shows that order 1
is possible, and the \PMlinkescapetext{parent} entry has a $2 \times 2$ Hadamard matrix
, so assume $m>2$.
We can assume that the first row of the matrix is all 1's by multiplying
selected columns by $-1$. Then permute columns as needed to arrive at a
matrix whose first three rows have the following form, where $P$ denotes a submatrix of one row
and all 1's and $N$ denotes a submatrix of one row and all $-1$'s.
$$\begin{matrix}
\begin{matrix}
x \quad &\quad y & \quad z & \quad w
\end{matrix} &
\begin{matrix}
\quad
\end{matrix}
\\
\left[ \begin{matrix}
\overbrace{P} & \overbrace{P} & \overbrace{P} & \overbrace{P} \\
P & P & N & N \\
P & N & P & N \\
\end{matrix} \right]
\end{matrix}
$$
Since the rows are orthogonal and there are $m$ columns we have
\begin{center}
$\begin{cases}
x + y + z +w &= m \\
x + y - z - w &= 0 \\
x - y + z -w &= 0 \\
x - y - z + w &= 0.
\end{cases}$
\end{center}
Adding the 4 equations together we get
$$
4x = m.
$$
so that $m$ must be divisible by 4.
%%%%%
%%%%%
\end{document}