-
Notifications
You must be signed in to change notification settings - Fork 6
/
05A99-PrincipleOfInclusionexclusionProofOf.tex
83 lines (69 loc) · 4.51 KB
/
05A99-PrincipleOfInclusionexclusionProofOf.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
\documentclass[12pt]{article}
\usepackage{pmmeta}
\pmcanonicalname{PrincipleOfInclusionexclusionProofOf}
\pmcreated{2013-03-22 12:33:27}
\pmmodified{2013-03-22 12:33:27}
\pmowner{mps}{409}
\pmmodifier{mps}{409}
\pmtitle{principle of inclusion-exclusion, proof of}
\pmrecord{6}{32804}
\pmprivacy{1}
\pmauthor{mps}{409}
\pmtype{Proof}
\pmcomment{trigger rebuild}
\pmclassification{msc}{05A99}
\endmetadata
% this is the default PlanetMath preamble. as your knowledge
% of TeX increases, you will probably want to edit this, but
% it should be fine as is for beginners.
% almost certainly you want these
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage{amsfonts}
% used for TeXing text within eps files
%\usepackage{psfrag}
% need this for including graphics (\includegraphics)
%\usepackage{graphicx}
% for neatly defining theorems and propositions
%\usepackage{amsthm}
% making logically defined graphics
%%%\usepackage{xypic}
% there are many more packages, add them here as you need them
% define commands here
\begin{document}
The proof is by induction. Consider a single set $A_1$. Then the principle of inclusion-exclusion states that $|A_1| = |A_1|$, which is trivially true.
Now consider a collection of exactly two sets $A_1$ and $A_2$. We know that
$$A \cup B = (A \setminus B) \cup (B \setminus A) \cup (A \cap B)$$
Furthermore, the three sets on the right-hand side of that equation must be disjoint. Therefore, by the addition principle, we have
\begin{eqnarray*}
|A \cup B| &=& |A \setminus B| + |B \setminus A| + |A \cap B| \\
&=& |A \setminus B | + |A \cap B| + |B \setminus A| + |A \cap B| - |A \cap B| \\
&=& |A| + |B| - |A \cap B| \\
\end{eqnarray*}
So the principle of inclusion-exclusion holds for any two sets.
Now consider a collection of $N > 2$ finite sets $A_1, A_2, \dots A_N$. We assume that the principle of inclusion-exclusion holds for any collection of $M$ sets where $1 \leq M < N$. Because the union of sets is associative, we may break up the union of all sets in the collection into a union of two sets:
$$\bigcup_{i=1}^N A_i = \left( \bigcup_{i=1}^{N-1} A_i \right ) \cup A_N$$
By the principle of inclusion-exclusion for two sets, we have
$$\left | \bigcup_{i=1}^N A_i \right | = \left | \bigcup_{i=1}^{N-1} A_i \right| + |A_N| - \left|\left( \bigcup_{i=1}^{N-1} A_i \right ) \cap A_N \right|$$
Now, let $I_k$ be the collection of all $k$-fold intersections of $A_1, A_2, \dots A_{N-1}$, and let $I'_k$ be the collection of all $k$-fold intersections of $A_1, A_2, \dots A_N$ that include $A_N$. Note that $A_N$ is included in every member of $I'_k$ and in no member of $I_k$, so the two sets do not duplicate one another.
We then have
$$\left | \bigcup_{i=1}^N A_i \right | = \sum_{j=1}^N \left( (-1)^{(j+1)} \sum_{S\in I_j} |S| \right ) + |A_N| - \left|\left( \bigcup_{i=1}^{N-1} A_i \right ) \cap A_N \right|$$
by the principle of inclusion-exclusion for a collection of $N-1$ sets. Then, we may distribute set intersection over set union to find that
$$\left | \bigcup_{i=1}^N A_i \right | = \sum_{j=1}^N \left( (-1)^{(j+1)} \sum_{S\in I_j} |S| \right ) + |A_N| - \left| \bigcup_{i=1}^{N-1} (A_i \cap A_N) \right |$$
Note, however, that $$(A_x \cap A_N) \cup (A_y \cap A_N) = (A_x \cap A_y \cap A_N)$$ Hence we may again apply the principle of inclusion-exclusion for $N-1$ sets, revealing that
\begin{eqnarray*}
\left | \bigcup_{i=1}^N A_i \right | &=& \sum_{j=1}^{N-1} \left( (-1)^{(j+1)} \sum_{S\in I_j} |S| \right ) + |A_N| - \sum_{j=1}^{N-1} \left( (-1)^{(j+1)} \sum_{S\in I_j} |S \cap A_N| \right ) \\
&=& \sum_{j=1}^{N-1} \left( (-1)^{(j+1)} \sum_{S\in I_j} |S| \right ) + |A_N| - \sum_{j=1}^{N-1} \left( (-1)^{(j+1)} \sum_{S\in I'_{j+1}} |S| \right ) \\
&=& \sum_{j=1}^{N-1} \left( (-1)^{(j+1)} \sum_{S\in I_j} |S| \right ) + |A_N| - \sum_{j=2}^{N} \left( (-1)^{(j)} \sum_{S\in I'_{j}} |S| \right ) \\
&=& \sum_{j=1}^{N-1} \left( (-1)^{(j+1)} \sum_{S\in I_j} |S| \right ) + |A_N| + \sum_{j=2}^{N} \left( (-1)^{(j+1)} \sum_{S\in I'_{j}} |S| \right ) \\
\end{eqnarray*}
The second sum does not include $I'_1$. Note, however, that $I'_1 = \{ A_N \}$, so we have
\begin{eqnarray*}
\left | \bigcup_{i=1}^N A_i \right | &=& \sum_{j=1}^{N-1} \left( (-1)^{(j+1)} \sum_{S\in I_j} |S| \right ) + \sum_{j=1}^{N} \left( (-1)^{(j+1)} \sum_{S\in I'_{j}} |S| \right ) \\
&=& \sum_{j=1}^{N-1} \left[ (-1)^{(j+1)} \left( \sum_{S\in I_j} |S| + \sum_{S\in I'_{j}} |S| \right ) \right]
+(-1)^{N+1}\left | \bigcap_{i=1}^N A_i\right | \\
\end{eqnarray*}
Combining the two sums yields the principle of inclusion-exclusion for $N$ sets.
%%%%%
%%%%%
\end{document}