-
Notifications
You must be signed in to change notification settings - Fork 6
/
05A30-GaussianPolynomials.tex
48 lines (46 loc) · 1.44 KB
/
05A30-GaussianPolynomials.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
\documentclass[12pt]{article}
\usepackage{pmmeta}
\pmcanonicalname{GaussianPolynomials}
\pmcreated{2013-03-22 11:49:49}
\pmmodified{2013-03-22 11:49:49}
\pmowner{mathcam}{2727}
\pmmodifier{mathcam}{2727}
\pmtitle{Gaussian polynomials}
\pmrecord{10}{30378}
\pmprivacy{1}
\pmauthor{mathcam}{2727}
\pmtype{Definition}
\pmcomment{trigger rebuild}
\pmclassification{msc}{05A30}
\pmclassification{msc}{05A10}
\pmclassification{msc}{16S36}
\pmclassification{msc}{26A09}
\pmclassification{msc}{26A18}
\pmclassification{msc}{15A04}
\pmsynonym{q-binomial coefficients}{GaussianPolynomials}
\pmrelated{ContentOfPolynomial}
\endmetadata
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{graphicx}
%%%%\usepackage{xypic}
\begin{document}
For an indeterminate $q$ and integers $n \ge m \ge 0$
we define the following: \par
(a) $(m)_q = q^{m-1} + q^{m-2} + \cdots + 1$ for $m>0$, \par
(b) $(m!)_q = (m)_q (m-1)_q \cdots (1)_q$ for $m>0$, and $(0!)_q = 1$, \par
(c) ${n \choose m}_q = \frac{(n!)_q}{(m!)_q ((n-m)!)_q}$.
If $m>n$ then we define ${n \choose m}_q=0$. \par
The expressions ${n \choose m}_q$ are called
{\it $q$-binomial coefficients} or {\it Gaussian polynomials}.\par
Note: if we replace $q$ with 1, then we obtain the familiar integers, factorials, and binomial coefficients. Specifically,\par
(a) $(m)_1 = m$, \par
(b) $(m!)_1 = m!$, \par
(c) ${n \choose m}_1 = {n \choose m}$.\par
(d) ${m \choose m}_q=1$.
%%%%%
%%%%%
%%%%%
%%%%%
\end{document}