-
Notifications
You must be signed in to change notification settings - Fork 6
/
05A19-PascalsRule.tex
43 lines (41 loc) · 1.08 KB
/
05A19-PascalsRule.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
\documentclass[12pt]{article}
\usepackage{pmmeta}
\pmcanonicalname{PascalsRule}
\pmcreated{2013-03-22 11:46:44}
\pmmodified{2013-03-22 11:46:44}
\pmowner{KimJ}{5}
\pmmodifier{KimJ}{5}
\pmtitle{Pascal's rule}
\pmrecord{10}{30246}
\pmprivacy{1}
\pmauthor{KimJ}{5}
\pmtype{Theorem}
\pmcomment{trigger rebuild}
\pmclassification{msc}{05A19}
%\pmkeywords{number theory combinatorics}
\pmrelated{BinomialCoefficient}
\pmrelated{VandermondeIdentity}
\pmrelated{PascalsTriangle}
\pmrelated{TheoremOfThePrimalRay}
\pmrelated{Mm2}
\pmrelated{Mm}
\pmrelated{LeTheoremeDuRayonPrimal}
\pmrelated{LeDeuxiemeTheoremeDuRayonPrimal}
\pmrelated{AProofOfGoldbachConjecture}
\pmrelated{AProofOfDePolignacConjectures}
\pmrelated{FermatGhanouchiSeriesAmazingFermatGhanouchiSequ}
\endmetadata
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{graphicx}
%%%%\usepackage{xypic}
\begin{document}
Pascal's rule is the binomial identity
\[ \binom{n}{k} + \binom{n}{k-1} = \binom{n+1}{k} \]
where $1 \leq k \leq n$ and $\binom{n}{k}$ is the binomial coefficient.
%%%%%
%%%%%
%%%%%
%%%%%
\end{document}