-
Notifications
You must be signed in to change notification settings - Fork 6
/
05A15-EnumerationOfLatticeWalks.tex
129 lines (104 loc) · 5.95 KB
/
05A15-EnumerationOfLatticeWalks.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
\documentclass[12pt]{article}
\usepackage{pmmeta}
\pmcanonicalname{EnumerationOfLatticeWalks}
\pmcreated{2013-03-22 19:20:54}
\pmmodified{2013-03-22 19:20:54}
\pmowner{csguy}{26054}
\pmmodifier{csguy}{26054}
\pmtitle{enumeration of lattice walks}
\pmrecord{5}{42298}
\pmprivacy{1}
\pmauthor{csguy}{26054}
\pmtype{Topic}
\pmcomment{trigger rebuild}
\pmclassification{msc}{05A15}
\endmetadata
% this is the default PlanetMath preamble. as your knowledge
% of TeX increases, you will probably want to edit this, but
% it should be fine as is for beginners.
% almost certainly you want these
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage{amsfonts}
% used for TeXing text within eps files
%\usepackage{psfrag}
% need this for including graphics (\includegraphics)
%\usepackage{graphicx}
% for neatly defining theorems and propositions
%\usepackage{amsthm}
% making logically defined graphics
%%%\usepackage{xypic}
% there are many more packages, add them here as you need them
% define commands here
\begin{document}
\newtheorem*{defs}{Definition}
\subsubsection*{Introduction}
We present explicit formulas for the number of walks in certain lattices. Proofs are given in a separate entry.
\subsubsection*{Definitions}
The following definitions formalize the concepts of square lattice, triangular lattice, honeycomb lattice, dice lattice, and walk.
\begin{defs}
The {\em square lattice} is the graph on vertex set $\mathbb{Z} \times \mathbb{Z}$ with each vertex $(i,j)$ adjacent to vertices $(i+1,j)$, $(i-1,j)$, $(i, j+1)$ and $(i, j-1)$.
\end{defs}
\begin{defs}
The {\em triangular lattice} is the graph on vertex set $\mathbb{Z} \times \mathbb{Z}$ with each vertex $(i,j)$ adjacent to vertices $(i+1,j)$, $(i-1,j)$, $(i,j+1)$, $(i,j-1$, $(i-1,j+1)$, and $(i+1,j-1)$.
\end{defs}
\begin{defs}
The {\em honeycomb lattice} is the graph on vertex set $\{(i,j) \in \mathbb{Z} \times \mathbb{Z} : i+j \not\equiv 2 \pmod 3 \}$, and with the following adjacencies:
\begin{enumerate}
\item If $i + j \equiv 0 \pmod 3$, then $(i,j)$ is adjacent to vertices $(i+1,j)$, $(i,j+1)$, and $(i-1,j-1)$.
\item If $i + j \equiv 1 \pmod 3$, then $(i,j)$ is adjacent to vertices $(i-1,j)$, $(i,j-1)$, and $(i+1,j+1)$.
\end{enumerate}
\end{defs}
\begin{defs}
The {\em dice lattice} is the graph on vertex set $\mathbb{Z} \times \mathbb{Z}$ with the following adjacencies:
\begin{enumerate}
\item If $i + j \equiv 0 \pmod 3$, then $(i,j)$ is adjacent to vertices $(i+1,j)$, $(i-1,j)$, $(i,j+1)$, $(i,j-1)$, $(i+1,j+1)$, and $(i-1,j-1)$.
\item If $i + j \equiv 1 \pmod 3$, then $(i,j)$ is adjacent to vertices $(i-1,j)$, $(i,j-1)$, and $(i+1,j+1)$.
\item If $i + j \equiv 2 \pmod 3$, then $(i,j)$ is adjacent to vertices $(i+1,j)$, $(i, j+1)$, and $(i-1,j-1)$.
\end{enumerate}
\end{defs}
\begin{defs}
A {\em walk} in a graph is a sequence of vertices where consecutive vertices in the sequence are adjacent. Notice that the same vertex can appear multiple times in a walk. A {\em closed walk} is a walk starting and ending with the same vertex. We use the notation $w(x,y,n)$ for the number of walks of length $n$ from $(0,0)$ to $(x,y)$ in a lattice.
\end{defs}
\subsubsection*{Square lattice}
The number of walks $w(x,y,n)$ of length $n$ from $(0,0)$ to $(x,y) \in \mathbb{Z} \times \mathbb{Z}$ in the square lattice is given by
\begin{align*}
w(x,y,n) = \binom{n}{\frac{n+x-y}{2}} \binom{n}{\frac{n-x-y}{2}}
\end{align*}
whenever $x+y$ and $n$ have the same parity. Otherwise $w(x,y,n) = 0$.
\subsubsection*{Triangular lattice}
The number of walks $w(x,y,n)$ of length $n$ from $(0,0)$ to $(x,y) \in \mathbb{Z} \times \mathbb{Z}$ in the triangular lattice is given by
\begin{align*}
w(x,y,n) &= \sum_{k=0}^n(-2)^{n-k}\binom{n}{k} \sum_{j=0}^k \binom{k}{j} \binom{k}{j-x-y}\binom{k}{j-x}
\end{align*}
In particular, the number of closed walks of length $n$ starting and ending at $(0,0)$ is
\begin{align*}
w(0,0,n) = \sum_{k=0}^n(-2)^{n-k}\binom{n}{k} \sum_{j=0}^k \binom{k}{j}^3
\end{align*}
\subsubsection*{Honeycomb lattice}
The number of walks $w(x,y,n)$ of even length $n$ from $(0,0)$ to $(x,y) \in \mathbb{Z} \times \mathbb{Z}$ in the honeycomb lattice is given by
\begin{align*}
w(x,y,n) &= \sum_{k=0}^{n/2} \binom{n/2}{k} \sum_{j=0}^k \binom{k}{j + x-(x+y)/3} \binom{k}{j} \binom{k}{j + (x+y)/3}\\
&= \sum_{k=0}^{n/2}\binom{n/2}{k}\binom{n/2}{k+(x+y)/3}\binom{2k+(x+y)/3}{k+(2x-y)/3}
\end{align*}
whenever $x+y \equiv 0 \pmod{3}$. Otherwise w(x,y,n) = 0.
The number of walks of odd length $n$ from $(0,0)$ to $(x,y) \in \mathbb{Z} \times \mathbb{Z}$ is $w(x,y,n) = w(x-1,y,n-1) + w(x, y+1, n-1) + w(x+1, y+1, n-1)$ if $x+y \equiv 1 \pmod{3}$. Otherwise $w(x,y,n) = 0$.
Setting $x = y = 0$ we obtain the following formula for the number of closed walks of (necessarily) even length $n$ starting and ending at $(0,0)$:
\begin{align*}
w(0,0,n) = \sum_{k=0}^{n/2} \binom{n/2}{k}\sum_{j=0}^k\binom{k}{j}^3 = \sum_{k=0}^{n/2}\binom{n/2}{k}^2\binom{2k}{k}
\end{align*}
\subsubsection*{Dice lattice}
The number of walks $w(x,y,n)$ of even length $n$ from $(0,0)$ to $(x,y)$ in the dice lattice is given by
\begin{align*}
w(x,y,n) &= 2^{n/2} \sum_{k=0}^{n/2} \binom{n/2}{k} \sum_{j=0}^k \binom{k}{j + x-(x+y)/3} \binom{k}{j} \binom{k}{j + (x+y)/3}\\
&= 2^{n/2} \sum_{k=0}^{n/2}\binom{n/2}{k}\binom{n/2}{k+(x+y)/3}\binom{2k+(x+y)/3}{k+(2x-y)/3}
\end{align*}
whenever $x+y \equiv 0 \pmod{3}$. Otherwise $w(x,y,n) = 0$.
The number of walks of odd length $n$ from $(0,0)$ to $(x,y) \in \mathbb{Z} \times \mathbb{Z}$ is $w(x,y,n) = w(x+1,y,n-1) + w(x,y+1,n-1) + w(x-1,y-1,n-1)$ if $x+y \equiv 2 \pmod{3}$; if $x+y \equiv 1 \pmod{3}$, $w(x,y,n) = w(x-1,y,n-1) + w(x,y-1,n-1) + w(x+1,y+1,n-1)$. Otherwise $w(x,y,n) = 0$.
Setting $x = y = 0$, we obtain the following formula for the number of closed walks of (necessarily) even length $n$ starting and ending at $(0,0)$:
\begin{align*}
w(0,0,n) = 2^{n/2}\sum_{k=0}^{n/2} \binom{n/2}{k} \sum_{j=0}^k \binom{k}{j}^3 = 2^{n/2}\sum_{k=0}^{n/2}\binom{n/2}{k}^2\binom{2k}{k}
\end{align*}
%%%%%
%%%%%
\end{document}