-
Notifications
You must be signed in to change notification settings - Fork 6
/
05A10-SumOfPowersOfBinomialCoefficients.tex
64 lines (49 loc) · 1.91 KB
/
05A10-SumOfPowersOfBinomialCoefficients.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
\documentclass[12pt]{article}
\usepackage{pmmeta}
\pmcanonicalname{SumOfPowersOfBinomialCoefficients}
\pmcreated{2013-03-22 14:25:43}
\pmmodified{2013-03-22 14:25:43}
\pmowner{Andrea Ambrosio}{7332}
\pmmodifier{Andrea Ambrosio}{7332}
\pmtitle{sum of powers of binomial coefficients}
\pmrecord{7}{35937}
\pmprivacy{1}
\pmauthor{Andrea Ambrosio}{7332}
\pmtype{Result}
\pmcomment{trigger rebuild}
\pmclassification{msc}{05A10}
\pmclassification{msc}{11B65}
\endmetadata
% this is the default PlanetMath preamble. as your knowledge
% of TeX increases, you will probably want to edit this, but
% it should be fine as is for beginners.
% almost certainly you want these
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage{amsfonts}
% used for TeXing text within eps files
%\usepackage{psfrag}
% need this for including graphics (\includegraphics)
%\usepackage{graphicx}
% for neatly defining theorems and propositions
%\usepackage{amsthm}
% making logically defined graphics
%%%\usepackage{xypic}
% there are many more packages, add them here as you need them
% define commands here
\begin{document}
Some results exist on sums of powers of binomial coefficients. Define $A_s$ as follows:
\[ A_s(n) = \sum_{i=0}^n {n \choose i}^s \]
for $s$ a positive integer and $n$ a nonnegative integer.
For $s=1$, the binomial theorem implies that the sum $A_1(n)$ is simply $2^n$.
For $s=2$, the following result on the sum of the squares of the binomial coefficients ${n \choose i}$ holds:
\[ A_2(n) = \sum_{i=0}^n {n \choose i}^2 = {2n \choose n} \]
that is, $A_2(n)$ is the $n$th central binomial coefficient.
{\bf Proof:}
This result follows immediately from the Vandermonde identity:
\[ {p+q \choose k}=\sum_{i=0}^k {p \choose i} {q \choose k-i} \]
upon choosing $p=q=k=n$ and observing that ${n \choose n-i}={n \choose i}$.
Expressions for $A_s(n)$ for larger values of $s$ exist in terms of hypergeometric functions.
%%%%%
%%%%%
\end{document}