-
Notifications
You must be signed in to change notification settings - Fork 6
/
05A10-Factorial.tex
47 lines (41 loc) · 1.33 KB
/
05A10-Factorial.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
\documentclass[12pt]{article}
\usepackage{pmmeta}
\pmcanonicalname{Factorial}
\pmcreated{2013-03-22 11:53:58}
\pmmodified{2013-03-22 11:53:58}
\pmowner{yark}{2760}
\pmmodifier{yark}{2760}
\pmtitle{factorial}
\pmrecord{22}{30516}
\pmprivacy{1}
\pmauthor{yark}{2760}
\pmtype{Definition}
\pmcomment{trigger rebuild}
\pmclassification{msc}{05A10}
\pmclassification{msc}{11B65}
\pmclassification{msc}{92-01}
\pmclassification{msc}{92B05}
\pmsynonym{factorial function}{Factorial}
\pmrelated{BinomialCoefficient}
\pmrelated{ExponentialFactorial}
\endmetadata
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage{amsfonts}
\begin{document}
\PMlinkescapeword{word}
For any non-negative integer $n$, the {\em factorial} of $n$, denoted $n!$, can be defined by
$$n!=\prod_{r=1}^n r$$
where for $n=0$ the empty product is taken to be $1$.
Alternatively, the factorial can be defined recursively by $0!=1$ and $n!=n(n-1)!$ for $n>0$.
$n!$ is equal to the number of permutations of $n$ distinct objects.
For example, there are $5!$ ways to arrange the five letters A, B, C, D and E into a word.
For every non-negative integer $n$ we have
$$\Gamma(n+1) = n!$$
where $\Gamma$ is Euler's gamma function.
In this way the notion of factorial can be generalized to all \PMlinkname{complex}{Complex} values except the negative integers.
%%%%%
%%%%%
%%%%%
%%%%%
\end{document}