-
Notifications
You must be signed in to change notification settings - Fork 6
/
05-00-EnumerativeCombinatorics.tex
231 lines (205 loc) · 6.37 KB
/
05-00-EnumerativeCombinatorics.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
\documentclass[12pt]{article}
\usepackage{pmmeta}
\pmcanonicalname{EnumerativeCombinatorics}
\pmcreated{2013-03-22 16:45:58}
\pmmodified{2013-03-22 16:45:58}
\pmowner{mps}{409}
\pmmodifier{mps}{409}
\pmtitle{enumerative combinatorics}
\pmrecord{14}{38993}
\pmprivacy{1}
\pmauthor{mps}{409}
\pmtype{Topic}
\pmcomment{trigger rebuild}
\pmclassification{msc}{05-00}
\pmrelated{DijkstrasAlgorithm}
\pmrelated{RuleOfProduct}
\endmetadata
% this is the default PlanetMath preamble. as your knowledge
% of TeX increases, you will probably want to edit this, but
% it should be fine as is for beginners.
% almost certainly you want these
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage{amsfonts}
% used for TeXing text within eps files
%\usepackage{psfrag}
% need this for including graphics (\includegraphics)
%\usepackage{graphicx}
% for neatly defining theorems and propositions
\usepackage{amsthm}
% making logically defined graphics
%%%\usepackage{xypic}
% there are many more packages, add them here as you need them
% define commands here
\newtheorem{proposition}{Proposition}
\newtheorem*{proposition*}{Proposition}
\theoremstyle{remark}
\newtheorem{example}{Example}
\newtheorem*{example*}{Example}
\begin{document}
\emph{Enumerative combinatorics} deals with the question: if we know
that a set $S$ is finite, how can we determine the exact number of
elements that $S$ contains?
Basic principles and techniques of enumerative combinatorics include:
\begin{itemize}
\item
the addition principle;
\item
the multiplication principle;
\item
the involution principle;
\item
the inclusion-exclusion principle; and
\item
the use of generating functions.
\end{itemize}
The principles listed above are disarmingly simple and seemingly
obvious. Nonetheless, when used properly they are powerful
tools for producing bijective proofs of combinatorial identities. On
the other hand, while generating functions can frequently be used to
give quick proofs of identities, it is sometimes difficult to extract
combinatorial proofs from such proofs.
%%% ADDITION
The most fundamental principle of enumerative combinatorics and the
basis of all counting is the \emph{addition principle}. It says that
if $S$ is a finite set, then
\[
|S| = \sum_{x\in S} 1.
\]
More generally, if $S=A\sqcup B$, then
\[
|S| = \sum_{x\in A\sqcup B} 1= \sum_{x\in A} 1 + \sum_{x\in B} 1 = |A| + |B|.
\]
By induction on $n$, we also get
\[
\biggl|\bigsqcup_{i\in[n]} S_i\biggr| = \sum_{i\in[n]} |S_i|.
\]
As an application of the addition principle, we prove the
\emph{multiplication principle}.
%%% MULTIPLICATION
\begin{proposition}
{\bf Multiplication principle.} If $S$ and $T$ are finite sets, then
\[
|S\times T| = |S|\cdot |T|.
\]
\end{proposition}
\begin{proof}
By the addition principle,
\[
|S\times T| = \sum_{(x,y)\in S\times T} 1.
\]
But we can write $S\times T$ as the disjoint union
\[
S\times T = \bigsqcup_{y\in T} S\times\{y\}.
\]
The projection map $S\times\{y\}\to S$ is a bijection, so
$|S\times\{y\}|=|S|$. Hence it follows that
\begin{align*}
|S\times T|
&= \sum_{y\in T} |S\times\{y\}| \\
&= \sum_{y\in T} |S| \\
&= |S|\cdot\sum_{y\in T} 1 \\
&= |S|\cdot |T|,
\end{align*}
which completes the proof.
\end{proof}
%%% INVOLUTION
The \emph{involution principle} says that if $\varphi\colon S\to S$ is
an involution, then for any $X\subset S$, $|X|=|\varphi(X)|$. The
following example illustrates the involution principle.
\begin{proposition}
{\bf Enumerating elements of the powerset.}
Let $[n]=\{1,2,\dots,n\}$ and let $2^{[n]}$ be the powerset of $[n]$.
Then the cardinality of $2^{[n]}$ is $2^n$.
\end{proposition}
\begin{proof}
Define a function $\varphi\colon 2^{[n]}\to 2^{[n]}$ by the formula
\[
\varphi(S) = S\Delta\{n\}.
\]
In other words, $\varphi(S)$ is the symmetric difference of $S$ and
$\{n\}$ --- if $n$ is an element of $S$, we remove it, and if $n$ is
not an element of $S$, we insert it. The function $\varphi$ is an
involution, hence a bijection. Now notice that $2^{[n-1]}\subset
2^{[n]}$ and $\varphi(2^{[n-1]}) = 2^{[n]}\setminus 2^{[n-1]}$. In
other words,
\[
2^{[n]} = 2^{[n-1]} \sqcup \varphi(2^{[n-1]}).
\]
Since $\varphi$ is a bijection, this implies that
\[
|2^{[n]}| = 2\cdot |2^{[n-1]}|.
\]
By induction on $n$ we obtain
\[
|2^{[n]}| = 2^n\cdot |2^{[0]}|.
\]
Now $[0] = \emptyset$, so $2^{[0]} = \{\emptyset\}$. Thus
$|2^{[0]}|=1$, implying that
\[
|2^{[n]}| = 2^n,
\]
which is what we wanted to show.
\end{proof}
%%% INCLUSION-EXCLUSION
As we have seen above, it is possible to use the addition principle to
count the number of elements in the disjoint union of finite sets.
But what if we want to count the number of elements in a non-disjoint
union of finite sets? The \emph{inclusion-exclusion principle} gives
us a way to do this. A common way of stating the inclusion-exclusion
principle is as the following proposition.
\begin{proposition}
{\bf Inclusion-exclusion principle.}
Let $S_1,\dots, S_n$ be finite sets. Then
\[
\biggl|\bigcup_{i\in[n]} S_i\biggr| = \sum_{T\in 2^{[n]}} (-1)^{|T|}\biggl|\bigcap_{i\in T} S_i\biggr|.
\]
\end{proposition}
The formula in this proposition uses negative numbers. But the core
of the inclusion-exclusion principle is a statement about natural
numbers.
\begin{proposition}
Let $S$ and $T$ be finite sets. Then
\[
|S|+|T| = |S\cup T| + |S\cap T|.
\]
Thus the lattice of finite subsets of $\mathbb{N}$ is a modular lattice.
\end{proposition}
\begin{proof}
By the addition principle,
\begin{align*}
|S|+|T|
&= |(S\setminus T)\sqcup(S\cap T)|+|(T\setminus S)\sqcup(S\cap T)| \\
&= |S\setminus T| + |S\cap T| + |T\setminus S| + |S\cap T|.
\end{align*}
Now observe that $S\cup T=(S\setminus T)\sqcup (S\cap T)\sqcup
(T\setminus S)$. So by a second application of the addition principle,
\[
|S\cup T|+|S\cap T|
= |S\setminus T| + |S\cap T| + |T\setminus S| + |S\cap T|.
\]
Hence $|S|+|T|=|S\cup T| + |S\cap T|$.
\end{proof}
%%% honestly, there are too many overloaded words in mathematics
\PMlinkescapeword{algebraic}
\PMlinkescapeword{basis}
\PMlinkescapeword{branch}
\PMlinkescapeword{branches}
\PMlinkescapeword{completes}
\PMlinkescapeword{configurations}
\PMlinkescapeword{connections}
\PMlinkescapeword{core}
\PMlinkescapeword{divide}
\PMlinkescapeword{field}
\PMlinkescapeword{identities}
\PMlinkescapeword{proposition}
\PMlinkescapeword{structure}
\PMlinkescapeword{structures}
\PMlinkescapeword{subfields}
\PMlinkescapeword{theory}
\PMlinkescapeword{type}
\PMlinkescapeword{words}
%%%%%
%%%%%
\end{document}