-
Notifications
You must be signed in to change notification settings - Fork 5
/
03-00-Surjective.tex
54 lines (50 loc) · 1.5 KB
/
03-00-Surjective.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
\documentclass[12pt]{article}
\usepackage{pmmeta}
\pmcanonicalname{Surjective}
\pmcreated{2013-03-22 12:32:48}
\pmmodified{2013-03-22 12:32:48}
\pmowner{drini}{3}
\pmmodifier{drini}{3}
\pmtitle{surjective}
\pmrecord{7}{32791}
\pmprivacy{1}
\pmauthor{drini}{3}
\pmtype{Definition}
\pmcomment{trigger rebuild}
\pmclassification{msc}{03-00}
\pmsynonym{onto}{Surjective}
\pmrelated{TypesOfHomomorphisms}
\pmrelated{InjectiveFunction}
\pmrelated{Bijection}
\pmrelated{Function}
\pmrelated{OneToOneFunctionFromOntoFunction}
\pmdefines{surjection}
\endmetadata
%\usepackage{graphicx}
%%%\usepackage{xypic}
\usepackage{bbm}
\newcommand{\Z}{\mathbbmss{Z}}
\newcommand{\C}{\mathbbmss{C}}
\newcommand{\R}{\mathbbmss{R}}
\newcommand{\Q}{\mathbbmss{Q}}
\newcommand{\mathbb}[1]{\mathbbmss{#1}}
\begin{document}
A function $f\colon X\to Y$ is called \emph{surjective} or \emph{onto} if, for every $y\in Y$, there is an $x\in X$ such that $f(x)=y$.
Equivalently, $f\colon X\to Y$ is onto when its image is all the codomain:
$$\mathrm{Im} f= Y.$$
\subsubsection*{Properties}
\begin{enumerate}
\item If $f\colon X\to Y$ is any function, then $f\colon X\to f(X)$ is
a surjection. That is, by restricting the codomain,
any function induces a surjection.
\item The composition of surjective functions (when defined) is
again a surjective function.
\item If $f\colon X\to Y$ is a surjection and $B\subseteq Y$, then
(see \PMlinkname{this page}{InverseImage})
$$
f f^{-1}(B) = B.
$$
\end{enumerate}
%%%%%
%%%%%
\end{document}