-
Notifications
You must be signed in to change notification settings - Fork 5
/
03-00-Partition.tex
38 lines (34 loc) · 1.03 KB
/
03-00-Partition.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
\documentclass[12pt]{article}
\usepackage{pmmeta}
\pmcanonicalname{Partition}
\pmcreated{2013-03-22 11:49:05}
\pmmodified{2013-03-22 11:49:05}
\pmowner{Wkbj79}{1863}
\pmmodifier{Wkbj79}{1863}
\pmtitle{partition}
\pmrecord{11}{30362}
\pmprivacy{1}
\pmauthor{Wkbj79}{1863}
\pmtype{Definition}
\pmcomment{trigger rebuild}
\pmclassification{msc}{03-00}
\pmclassification{msc}{45D05}
\pmsynonym{set partition}{Partition}
\pmrelated{EquivalenceRelation}
\pmrelated{EquivalenceClass}
\pmrelated{BeattysTheorem}
\pmrelated{Coloring}
\endmetadata
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{graphicx}
%%%%\usepackage{xypic}
\begin{document}
A \emph{partition} $P$ of a set $S$ is a collection of pairwise disjoint nonempty sets such that $\cup P = S$.
Any partition $P$ of a set $S$ introduces an equivalence relation on $S$, where each $A \in P$ is an equivalence class. Similarly, given an equivalence relation on $S$, the collection of distinct equivalence classes is a partition of $S$.
%%%%%
%%%%%
%%%%%
%%%%%
\end{document}