-
Notifications
You must be signed in to change notification settings - Fork 5
/
03-00-CharacteristicFunction.tex
77 lines (68 loc) · 2.01 KB
/
03-00-CharacteristicFunction.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
\documentclass[12pt]{article}
\usepackage{pmmeta}
\pmcanonicalname{CharacteristicFunction}
\pmcreated{2013-03-22 11:48:31}
\pmmodified{2013-03-22 11:48:31}
\pmowner{bbukh}{348}
\pmmodifier{bbukh}{348}
\pmtitle{characteristic function}
\pmrecord{12}{30350}
\pmprivacy{1}
\pmauthor{bbukh}{348}
\pmtype{Definition}
\pmcomment{trigger rebuild}
\pmclassification{msc}{03-00}
\pmclassification{msc}{26-00}
\pmclassification{msc}{26A09}
\pmclassification{msc}{28-00}
\pmsynonym{indicator function}{CharacteristicFunction}
\pmrelated{SimpleFunction}
\endmetadata
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage{amsfonts}
%\usepackage{graphicx}
%%%%%\usepackage{xypic}
%\makeatletter
%\@ifundefined{bibname}{}{\renewcommand{\bibname}{References}}
%\makeatother
\begin{document}
{\bf Definition} Suppose $A$ is a subset of a set $X$. Then the
function
\begin{equation*}
\chi_A(x) =
\begin{cases}
1,&\text{when }x\in A,\\
0,&\text{when }x\in X\setminus A
\end{cases}
\end{equation*}
is the \emph{characteristic function} for $A$.
%From the definition, it follows that there is a natural correspondence
%between charactersitic functions in a set $X$ and the power set of $X$.
\subsubsection{Properties}
Suppose $A,B$ are subsets of a set $X$.
\begin{enumerate}
\item For set intersections and set unions, we have
\begin{eqnarray*}
\chi_{A\cap B} &=& \chi_A \chi_B, \\
\chi_{A\cup B} &=& \chi_A + \chi_B - \chi_{A\cap B},\\
\chi_{A\cap B} &=& \min(\chi_A,\chi_B),\\
\chi_{A\cup B} &=& \max(\chi_A,\chi_B).
\end{eqnarray*}
\item For the symmetric difference,
$$\chi_{A\bigtriangleup B} = \chi_A + \chi_B - 2\chi_{A\cap B}.$$
\item For the set complement,
$$\chi_{A^\complement} = 1-\chi_A. $$
\end{enumerate}
\subsubsection{Remarks}
A synonym for characteristic function is \emph{indicator function}
\cite{folland}.
\begin{thebibliography}{9}
\bibitem{folland}
G.B. Folland, \emph{Real Analysis: Modern Techniques and Their Applications}, 2nd ed, John Wiley \& Sons, Inc., 1999.
\end{thebibliography}
%%%%%
%%%%%
%%%%%
%%%%%
\end{document}