-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain.py
285 lines (234 loc) · 11 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "5"
import numpy as np
import torch
from models.CBGNN import CBGNN
from sklearn import metrics
import torch.nn.functional as F
import pickle
from torch_geometric.utils import remove_self_loops, add_self_loops
from utils.khop_intersection import whether_khop_intersection
import time
def train():
global optimizer
model.train()
if optimizer != None:
optimizer.zero_grad()
Scores = model(train_Xs, train_Edge_indices, train_Edge2cycles, len_edges, Direction, max_len, use_recurrent_RNN, temperature, whether_k = whether_k)
Pos_scores = Scores[:pos_split[2]]
Neg_scores = Scores[pos_split[2]: ]
# cross entropy loss
train_y = torch.cat(
(torch.ones(pos_split[0]), torch.zeros(pos_split[0])))
if use_cuda:
train_y = train_y.cuda()
loss = F.binary_cross_entropy(torch.cat((Pos_scores[:pos_split[0]], Neg_scores[:pos_split[0]])), train_y)
# margin ranking loss
#criterion = torch.nn.MarginRankingLoss(loss_margin, reduction='mean')
#if use_cuda:
# loss = criterion(Pos_scores[:pos_split[0]], Neg_scores.view(len(Pos_scores), -1).mean(dim=1)[:pos_split[0]],
# torch.Tensor([1]).cuda()).cuda()
#else:
# loss = criterion(Pos_scores[:pos_split[0]], Neg_scores.view(len(Pos_scores), -1).mean(dim=1)[:pos_split[0]],
# torch.Tensor([1]))
if optimizer == None:
total_params = [{'params': model.parameters()}]
for ccnt_model in range(num_model):
total_params.append({'params': model.permuteCE[ccnt_model]})
if learn_combine:
total_params.append({'params': model.CPMLP, 'lr': learning_rate})
optimizer = torch.optim.Adam(total_params, lr = learning_rate, weight_decay = weight_decay)
loss.backward()
optimizer.step()
return loss
def test( ):
model.eval()
Scores = model(train_Xs, train_Edge_indices, train_Edge2cycles, len_edges, Direction, max_len, use_recurrent_RNN, temperature, whether_k = whether_k)
Pos_scores = Scores[:pos_split[2]]
Neg_scores = Scores[pos_split[2]:]
train_label = [1 for _ in range(pos_split[0])] + [0 for _ in range(pos_split[0])]
train_scores = Pos_scores.detach().cpu().tolist()[:pos_split[0]] + Neg_scores.detach().cpu().tolist()[:pos_split[0]]
train_auc = metrics.roc_auc_score(train_label, train_scores)
train_pr = metrics.average_precision_score(train_label, train_scores)
val_label = [1 for _ in range(pos_split[1] - pos_split[0])] + [0 for _ in range(pos_split[1] - pos_split[0])]
val_scores = Pos_scores.detach().cpu().tolist()[pos_split[0]:pos_split[1]] + Neg_scores.detach().cpu().tolist()[
pos_split[0]:pos_split[1]]
val_auc = metrics.roc_auc_score(val_label, val_scores)
val_pr = metrics.average_precision_score(val_label, val_scores)
test_label = [1 for _ in range(pos_split[2] - pos_split[1])] + [0 for _ in range(pos_split[2] - pos_split[1])]
test_scores = Pos_scores.detach().cpu().tolist()[pos_split[1]:pos_split[2]] + Neg_scores.detach().cpu().tolist()[
pos_split[1]:pos_split[2]]
test_auc = metrics.roc_auc_score(test_label, test_scores)
test_pr = metrics.average_precision_score(test_label, test_scores)
return train_auc, train_pr, val_auc, val_pr, test_auc, test_pr
if __name__ == "__main__":
#torch.backends.cudnn.enabled = False
#data_name = "ttest"
#data_name = "WN18RR_v4"
#data_name = "fb237_v4"
data_name = "nell_v4"
save_model = False
epochs = 100
loss_margin = 0.8
start_time = time.time()
# for cluster root
if data_name in ["nell_v3", "nell_v4", "fb237_v4", "fb237_v2", "fb237_v1", "WN18RR_v3", "WN18RR_v1"]:
num_model = 20
elif data_name in ["nell_v2"]:
num_model = 50
else:
num_model = 30
# cycle_the = 10
cycle_the = 2
use_cuda = False
learn_features = True
learn_combine = False
temperature = 1
rnn_layers = 2
output_dim = 20
if data_name in ["nell_v1"]:
use_biembed = False
use_recurrent_RNN = True
else:
use_biembed = True
use_recurrent_RNN = False
if data_name in ['nell_v1']:
dropout = 0
else:
dropout = 0.2
use_save_file = True
use_permute = False
if data_name in ["nell_v3", "nell_v4"]:
max_len = 6
elif data_name in ["nell_v2",'WN18RR_v2']:
max_len = 8
elif data_name in ["fb237_v4"]:
max_len = 7
elif data_name in ['WN18RR_v3']:
max_len = 10
elif data_name in ['nell_v1']:
max_len = 3
else:
max_len = 5
use_inductive = True
loop_rate = 0.2
loop_epoch = 0
use_gumbel = True
learning_rate = 0.005
weight_decay = 5e-5
hop = 2
use_whether_k = False
use_graph_cluster = True
global optimizer
if use_inductive:
from utils.data_utils_inductive_posneg import process_files
save_pkl_name = "/CBGNN_ind/"
else:
# the code is wrong, only inductive is working
#from utils.data_utils_transductive import process_files
save_pkl_name = "/CBGNN/"
if not os.path.exists("./data/" + data_name + save_pkl_name):
os.mkdir("./data/" + data_name + save_pkl_name)
num_features = 4 * output_dim * rnn_layers
Models = []
Model_Xs = []
Optimizers = []
train_Xs = []
Direction = []
train_Edge_indices = []
train_Edge2cycles = []
Len_poses = []
train_Loops = []
train_Loops_label = []
Pos_splits = []
torch.autograd.set_detect_anomaly(True)
#seed = np.random.choice(10000)
seed = 1234
root = None
test_root = None
center_list = None
for i in range(num_model):
#seed = np.random.choice(10000)
if not use_save_file:
#train_params = process_files(data_name, cycle_the = cycle_the, seed = seed, root = None, num_models = num_model, cnt_model = i, use_graph_cluster = use_graph_cluster, root_list = center_list)
train_params = process_files(data_name, cycle_the = cycle_the, seed = seed, num_models = num_model, cnt_model = i, use_graph_cluster = use_graph_cluster, pos_root_list = center_list)
if use_graph_cluster:
center_list = train_params["pos_root_list"]
else:
if os.path.exists("./data/" + data_name + save_pkl_name + str(i) + ".pkl"):
save_file = open("./data/" + data_name + save_pkl_name + str(i) + ".pkl", "rb")
print("loading the {}-th data".format(i))
train_params = pickle.load(save_file)
else:
train_params = process_files(data_name, cycle_the = cycle_the, seed = seed, num_models = num_model, cnt_model = i, use_graph_cluster = use_graph_cluster, pos_root_list = center_list)
if use_graph_cluster:
center_list = train_params["pos_root_list"]
save_file = open("./data/" + data_name + save_pkl_name + str(i) + ".pkl", "wb")
pickle.dump(train_params, save_file)
save_file.close()
#root = train_params["root"]
if i == 0:
if use_whether_k:
whether_k = torch.Tensor(whether_khop_intersection(train_params["pos_triplets"], train_params["neg_triplets"], k = hop))
else:
whether_k = None
if i == 0:
if learn_features:
model = CBGNN(num_model, num_features, num_features, len(train_params["relation2id"]), output_dim, rnn_layers, learn_features, learn_combine, dropout, use_permute = use_permute, use_biembed = use_biembed, use_cuda = use_cuda, use_gumbel = use_gumbel)
else:
model = CBGNN(num_model, len(train_params["relation2id"]), num_features, None, None, None, learn_features, learn_combine, dropout, use_permute = use_permute, use_biembed = use_biembed, use_cuda = use_cuda, use_gumbel = use_gumbel)
if use_cuda:
model = model.cuda()
#optimizer = torch.optim.Adam(model.parameters(), lr=0.01, weight_decay=5e-4)
optimizer = None
len_pos = len(train_params["pos_triplets"])
pos_split = train_params["pos_split"]
train_loop_index = train_params["train_loop_index"]
if not learn_features:
train_Xs.append(train_params["Cycle2relation"])
train_Loops.append(train_params["Cycle2relation"][train_loop_index])
else:
train_Xs.append(train_params["Path_types"])
tmp_list = [train_params["Path_types"][loop_index] for loop_index in train_loop_index]
train_Loops.append(tmp_list)
Direction.append(train_params["Path_directions"])
#train_Loops.append(train_params["Path_types"][train_loop_index])
train_Loops_label.append(train_params["Cycle2positive"][train_loop_index])
#len_loops = len(train_params["Cycle2edge"])
len_loops = train_params["len_loops"]
tmp_edge_index = train_params["edge_index"]
tmp_edge_index, _ = remove_self_loops(tmp_edge_index)
tmp_edge_index, _ = add_self_loops(tmp_edge_index, num_nodes=len_loops)
train_Edge_indices.append(tmp_edge_index)
#train_Edge2cycles.append(torch.nonzero(train_params["Cycle2edge"].T))
train_Edge2cycles.append(train_params["Cycle2edge"])
#len_edges = train_params["Cycle2edge"].size()[1]
len_edges = train_params["len_edges"]
start_time_1 = time.time()
print("Generate SPT cycle bases cost time: {}s".format(start_time_1 - start_time))
max_val_pr = 0; max_test_pr = 0; max_test_auc = 0; max_val_auc = 0
for epoch in range(1, epochs + 1):
if epoch > loop_epoch:
loop_rate = 0
train_loss = train()
if epoch == epochs:
start_inference = time.time()
train_auc, train_pr, val_auc, val_pr, test_auc, test_pr = test()
if epoch == epochs:
print("Inference a epoch cost time: {}s".format(time.time() - start_inference))
print("Epoch: {}, Train loss: {}, Train Auc-roc: {}, Train Auc-pr: {}, Val Auc-roc: {}, Val Auc-pr: {}, Test Auc-roc: {}, Test Auc-pr: {}".format(epoch, train_loss, train_auc, train_pr, val_auc, val_pr, test_auc, test_pr))
if max_val_pr < val_pr:
#if max_val_auc < val_auc:
max_val_pr = val_pr
max_val_auc = val_auc
max_test_pr = test_pr
max_test_auc = test_auc
if save_model:
torch.save(model.state_dict(), "./data/" + data_name + save_pkl_name + "best_model.pkl")
if learn_combine:
print(model.CPMLP)
print(model.softmax(model.CPMLP / temperature))
print("Max Val Auc-roc: {}, Max Val Auc-pr: {}, Max Test Auc-roc: {}, Max Test Auc-pr: {}".format(max_val_auc, max_val_pr, max_test_auc, max_test_pr))
end_time = time.time()
print("Train and Inference cost time: {}s".format(end_time - start_time_1))
print("Total cost time: {}s".format(end_time - start_time))