forked from brownvc/ganimorph
-
Notifications
You must be signed in to change notification settings - Fork 0
/
model.py
258 lines (210 loc) · 11 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
import tensorflow as tf
from tensorflow.python.training import moving_averages
from tensorpack import *
from tensorpack.utils.viz import *
from tensorpack.tfutils.summary import add_moving_summary
from GAN import GANTrainer, MultiGPUGANTrainer, SeparateGANTrainer, GANModelDesc
from utils import *
import tensorpack.tfutils.symbolic_functions as symbf
SHAPE = 128
BATCH = 16
TEST_BATCH = 32
NF = 64 # channel size
class Model(GANModelDesc):
def _get_inputs(self):
return [InputDesc(tf.float32, (None, SHAPE, SHAPE, 3), 'inputA'),
InputDesc(tf.float32, (None, SHAPE, SHAPE, 3), 'inputB')]
@staticmethod
def build_res_block(x, name, chan, first=False):
with tf.variable_scope(name):
input = x
l = (LinearWrap(x)
.Conv2D('conv0', chan, stride=1, kernel_shape=3)
.Conv2D('conv1', chan, stride=1, kernel_shape=3)())
l = (LinearWrap(tf.concat([l, input], axis=1))
.Conv2D('conv2', chan, stride=1, kernel_shape=3)())
return l
def generator(self, img):
with argscope([Conv2D, Deconv2D],
nl=INLReLU, kernel_shape=4, stride=2), \
argscope(Deconv2D, nl=INReLU):
def res_group(input, name, depth, channels):
l = input
for k in range(depth):
l = Model.build_res_block(l, name + ('/res%d' % k), channels,
first=(k==0))
return l
subDepth = 3
conv0 = Conv2D('conv0', img, NF, nl=LeakyReLU)
conv1 = Conv2D('conv1', conv0, NF * 2)
layer1 = res_group(conv1, 'layer1', subDepth, NF*2)
conv2 = Conv2D('conv2', layer1, NF * 4)
layer2 = res_group(conv2, 'layer2', subDepth, NF*4)
conv3 = Conv2D('conv3', layer2, NF * 8)
l = res_group(conv3, 'layer3', subDepth, NF*8)
deconv0 = Deconv2D('deconv0', l, NF * 4)
up1 = tf.concat([deconv0, layer2], axis=1)
b_layer_2 = res_group(up1, 'blayer2', subDepth, NF * 4)
deconv1 = Deconv2D('deconv1', b_layer_2, NF * 2)
up2 = tf.concat([deconv1, layer1], axis=1)
b_layer_1 = res_group(up2, 'blayer1', subDepth, NF * 2)
deconv2 = Deconv2D('deconv2', b_layer_1, NF * 1)
deconv3 = Deconv2D('deconv3', deconv2, 3, nl=tf.sigmoid)
return deconv3
def discriminator(self, img):
with argscope(Conv2D, nl=INLReLU, kernel_shape=4, stride=2):
l = Conv2D('conv0', img, NF*2, nl=LeakyReLU)
relu1 = Conv2D('conv1', l, NF * 4)
relu2 = Conv2D('conv2', relu1, NF * 8)
relu3 = Conv2D('convf', relu2, NF*8, kernel_shape=3, stride=1)
atrous = tf.contrib.layers.conv2d(relu3, NF*8, kernel_size=3,
data_format='NCHW', rate=2,
activation_fn=INLReLU, biases_initializer=None)
atrous2 = tf.contrib.layers.conv2d(atrous, NF*8, kernel_size=3,
data_format='NCHW', rate=4,
activation_fn=INLReLU, biases_initializer=None)
atrous3 = tf.contrib.layers.conv2d(atrous2, NF*8, kernel_size=3,
data_format='NCHW', rate=8,
activation_fn=INLReLU, biases_initializer=None)
merge = tf.concat([relu3, atrous3], axis=1)
clean = Conv2D('mConv', merge, NF*8, kernel_shape=3, stride=1)
lsgan = Conv2D('lsconv', clean, 1, stride=1, nl=tf.identity,
use_bias=False)
return lsgan, [relu1, relu2, relu3, atrous, atrous2, atrous3, clean]
def get_feature_match_loss(self, feats_real, feats_fake):
losses = []
for real, fake in zip(feats_real, feats_fake):
loss = tf.reduce_mean(tf.squared_difference(
tf.reduce_mean(real, 0),
tf.reduce_mean(fake, 0)),
name='mse_feat_' + real.op.name)
losses.append(loss)
ret = tf.reduce_mean(losses, name='feature_match_loss')
add_moving_summary(ret)
return ret
def loss_normalize(self, loss, update_condition, epsilon=1e-10):
# Variable used for storing the scalar-value of the loss-function.
loss_value = tf.Variable(1.0, name='loss_scalar_val_' + loss.op.name)
loss_value_smooth = (tf.Variable(1.0, name='loss_smooth_' +
loss.op.name))
#TODO don't update if is_training
ma_loss_value = (
moving_averages.assign_moving_average(
loss_value_smooth, loss, 0.9999, zero_debias=False, name='loss_EMA'
)
)
tf.add_to_collection(tf.GraphKeys.UPDATE_OPS, ma_loss_value)
# Expression used for either updating the scalar-value or
# just re-using the old value.
# Note that when loss_value.assign(loss) is evaluated, it
# first evaluates the loss-function which is a TensorFlow
# expression, and then assigns the resulting scalar-value to
# the loss_value variable.
loss_value_updated = tf.cond(update_condition,
lambda: loss_value.assign(ma_loss_value),
lambda: loss_value)
# Expression for the normalized loss-function.
loss_normalized = loss / (loss_value_updated + epsilon)
add_moving_summary(tf.identity(loss_value, name='loss_scalar_' + loss.op.name))
return loss_normalized
def dragan_penalty(self, inputs):
mean, var = tf.nn.moments(inputs,
axes=range(1,inputs.get_shape().ndims), keep_dims=True)
inputs_p = (inputs + 0.5 * tf.sqrt(var) *
tf.random_uniform(shape=tf.shape(inputs), minval=-1., maxval=1.))
alpha = tf.random_uniform(shape=[tf.shape(inputs)[0], 1, 1, 1], minval=0., maxval=1.)
differences = inputs_p - inputs # This is different from WGAN-GP
interpolates = inputs + (alpha * differences)
D_inter,_,_ = self.discriminator(interpolates)
gradients = tf.gradients(D_inter, [interpolates])[0]
slopes = tf.sqrt(tf.reduce_sum(tf.square(gradients), reduction_indices=[1]))
gradient_penalty = tf.reduce_mean((slopes - 1.) ** 2,
name='grad_penalty_red')
return tf.identity(gradient_penalty * 0.25, name='grad_penalty')
def _build_graph(self, inputs):
A, B = inputs
A = tf.transpose(A / 255.0, [0, 3, 1, 2])
B = tf.transpose(B / 255.0, [0, 3, 1, 2])
def viz3(name, a, b, c):
im = tf.concat([a, b, c], axis=3)
im = tf.transpose(im, [0, 2, 3, 1])
im = (im) * 255
im = tf.clip_by_value(im, 0, 255)
im = tf.cast(im, tf.uint8, name='viz_' + name)
tf.summary.image(name, im, max_outputs=50)
# use the initializers from torch
with argscope([Conv2D, Deconv2D, FullyConnected],
W_init=tf.contrib.layers.variance_scaling_initializer(factor=0.333, uniform=True),
use_bias=False), \
argscope(BatchNorm, gamma_init=tf.random_uniform_initializer()), \
argscope([Conv2D, Deconv2D, BatchNorm, InstanceNorm], data_format='NCHW'), \
argscope(LeakyReLU, alpha=0.2):
with tf.variable_scope('gen'):
with tf.variable_scope('B'):
AB = self.generator(A)
with tf.variable_scope('A'):
BA = self.generator(B)
with tf.variable_scope('A', reuse=True):
ABA = self.generator(AB)
with tf.variable_scope('B', reuse=True):
BAB = self.generator(BA)
viz3('A_recon', A, AB, ABA)
viz3('B_recon', B, BA, BAB)
with tf.variable_scope('discrim'):
with tf.variable_scope('A'):
A_dis_real, A_feats_real = self.discriminator(A)
with tf.variable_scope('A', reuse=True):
A_dis_fake, A_feats_fake = self.discriminator(BA)
with tf.variable_scope('B'):
B_dis_real, B_feats_real = self.discriminator(B)
with tf.variable_scope('B', reuse=True):
B_dis_fake, B_feats_fake = self.discriminator(AB)
def LSGAN_losses(real, fake):
with tf.name_scope('LSGAN_losses'):
d_real = tf.reduce_mean(tf.squared_difference(real, 0.9), name='d_real')
d_fake = tf.reduce_mean(tf.square(fake), name='d_fake')
d_loss = tf.multiply(d_real + d_fake, 0.5, name='d_loss')
g_loss = tf.reduce_mean(tf.squared_difference(fake, 0.9), name='g_loss')
add_moving_summary(g_loss, d_loss)
return g_loss, d_loss
with tf.name_scope('LossA'):
# reconstruction loss
recon_loss_A = tf_dssim(A, ABA)
recon_loss_A_l = tf.losses.absolute_difference(A,ABA,
reduction=tf.losses.Reduction.MEAN)
# gan loss
self.build_losses(A_dis_real, A_dis_fake)
G_loss_A = self.g_loss
D_loss_A = self.d_loss
# feature matching loss
fm_loss_A = self.get_feature_match_loss(A_feats_real, A_feats_fake)
with tf.name_scope('LossB'):
recon_loss_B = tf_dssim(B, BAB)
recon_loss_B_l = tf.losses.absolute_difference(B, BAB,
reduction=tf.losses.Reduction.MEAN)
self.build_losses(B_dis_real, B_dis_fake)
G_loss_B = self.g_loss
D_loss_B = self.d_loss# + grad_penalty_B
fm_loss_B = self.get_feature_match_loss(B_feats_real, B_feats_fake)
global_step = get_global_step_var()
rate = tf.train.piecewise_constant(global_step, [np.int64(15000), np.int64(25000), np.int64(50000), np.int64(100000)], [0.01, 0.10, 0.15, 0.20, 0.25])
rate = tf.identity(rate, name='rate') # mitigate a TF bug
loss_update = tf.logical_or(tf.equal(global_step, tf.constant(36,
dtype=np.int64)), tf.equal(global_step % 90, tf.constant(0, dtype=np.int64)))
rate = tf.constant(0.33, np.float32, name='static_rate')
g_loss = tf.add_n([
(self.loss_normalize(G_loss_A + G_loss_B, loss_update) * 0.7 +
self.loss_normalize(fm_loss_A + fm_loss_B, loss_update) * 0.3) * (1 - rate),
(self.loss_normalize((recon_loss_A + recon_loss_B), loss_update) *
0.7 +
self.loss_normalize((recon_loss_A_l + recon_loss_B_l),
loss_update) * 0.3) * rate], name='G_loss_total')
d_loss = tf.add_n([D_loss_A, D_loss_B], name='D_loss_total')
self.collect_variables('gen', 'discrim')
self.g_loss = g_loss
self.d_loss = d_loss
add_moving_summary(recon_loss_A, recon_loss_B, rate, g_loss, d_loss,
recon_loss_A_l, recon_loss_B_l)
def _get_optimizer(self):
lr = symbolic_functions.get_scalar_var('learning_rate', 2e-4, summary=True)
return tf.train.AdamOptimizer(lr, beta1=0.5)