-
Notifications
You must be signed in to change notification settings - Fork 141
/
08-lambda-the-ultimate.ss
executable file
·653 lines (580 loc) · 15 KB
/
08-lambda-the-ultimate.ss
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
;
; Chapter 8 of The Little Schemer:
; Lambda the Ultimate
;
; Code examples assemled by Peteris Krumins ([email protected]).
; His blog is at http://www.catonmat.net -- good coders code, great reuse.
;
; Get yourself this wonderful book at Amazon: http://bit.ly/4GjWdP
;
; The atom? primitive
;
(define atom?
(lambda (x)
(and (not (pair? x)) (not (null? x)))))
; The rember-f function takes the test function, element, and a list
; and removes the element that test true
;
(define rember-f
(lambda (test? a l)
(cond
((null? l) '())
((test? (car l) a) (cdr l))
(else
(cons (car l) (rember-f test? a (cdr l)))))))
; Examples of rember-f
;
(rember-f eq? 2 '(1 2 3 4 5))
; ==> '(1 3 4 5)
; The eq?-c function takes an atom and returns a function that
; takes an atom and tests if they are the same
;
(define eq?-c
(lambda (a)
(lambda (x)
(eq? a x))))
; Example of eq?-c
;
((eq?-c 'tuna) 'tuna) ; #t
((eq?-c 'tuna) 'salad) ; #f
(define eq?-salad (eq?-c 'salad))
; Examples of eq?-salad
;
(eq?-salad 'salad) ; #t
(eq?-salad 'tuna) ; #f
; Another version of rember-f that takes test as an argument
; and returns a function that takes an element and a list
; and removes the element from the list
;
(define rember-f
(lambda (test?)
(lambda (a l)
(cond
((null? l) '())
((test? (car l) a) (cdr l))
(else
(cons (car l) ((rember-f test?) a (cdr l))))))))
; Test of rember-f
;
((rember-f eq?) 2 '(1 2 3 4 5))
; ==> '(1 3 4 5)
; Curry (rember-f eq?)
;
(define rember-eq? (rember-f eq?))
; Test curried function
;
(rember-eq? 2 '(1 2 3 4 5))
; ==> '(1 3 4 5)
(rember-eq? 'tuna '(tuna salad is good))
; ==> '(salad is good)
(rember-eq? 'tuna '(shrimp salad and tuna salad))
; ==> '(shrimp salad and salad)
(rember-eq? 'eq? '(equal? eq? eqan? eqlist? eqpair?))
; ==> '(equal? eqan? eqlist? eqpair?)
; The insertL function from Chapter 3 (03-cons-the-magnificent.ss)
; This time curried
;
(define insertL-f
(lambda (test?)
(lambda (new old l)
(cond
((null? l) '())
((test? (car l) old)
(cons new (cons old (cdr l))))
(else
(cons (car l) ((insertL-f test?) new old (cdr l))))))))
; Test insertL-f
;
((insertL-f eq?)
'd
'e
'(a b c e f g d h)) ; '(a b c d e f g d h)
; The insertR function, curried
;
(define insertR-f
(lambda (test?)
(lambda (new old l)
(cond
((null? l) '())
((test? (car l) old)
(cons old (cons new (cdr l))))
(else
(cons (car l) ((insertR-f test?) new old (cdr l))))))))
; Test insertR-f
((insertR-f eq?)
'e
'd
'(a b c d f g d h)) ; '(a b c d e f g d h)
; The seqL function is what insertL does that insertR doesn't
;
(define seqL
(lambda (new old l)
(cons new (cons old l))))
; The seqR function is what insertR does that insertL doesn't
;
(define seqR
(lambda (new old l)
(cons old (cons new l))))
; insert-g acts as insertL or insertR depending on the helper
; function passed to it
;
(define insert-g
(lambda (seq)
(lambda (new old l)
(cond
((null? l) '())
((eq? (car l) old)
(seq new old (cdr l)))
(else
(cons (car l) ((insert-g seq) new old (cdr l))))))))
; insertL is now just (insert-g seqL)
;
(define insertL (insert-g seqL))
; insertR is now just (insert-g seqR)
;
(define insertR (insert-g seqR))
; Test insertL
;
(insertL
'd
'e
'(a b c e f g d h)) ; '(a b c d e f g d h)
; Test insertR
(insertR
'e
'd
'(a b c d f g d h)) ; '(a b c d e f g d h)
; insertL can also be defined by passing it a lambda
;
(define insertL
(insert-g
(lambda (new old l)
(cons new (cons old l)))))
; Test insertL
;
(insertL
'd
'e
'(a b c e f g d h)) ; '(a b c d e f g d h)
; The subst function from Chapter 3 (03-cons-the-magnificent.ss)
;
(define subst-f
(lambda (new old l)
(cond
((null? l) '())
((eq? (car l) old)
(cons new (cdr l)))
(else
(cons (car l) (subst new old (cdr l)))))))
; The seqS function is what subst does that neither insertL nor insertR do
;
(define seqS
(lambda (new old l)
(cons new l)))
; subst is now just (insret-g seqS)
;
(define subst (insert-g seqS))
; Test subst
;
(subst
'topping
'fudge
'(ice cream with fudge for dessert)) ; '(ice cream with topping for dessert)
; Guess what yyy is
;
(define yyy
(lambda (a l)
((insert-g seqrem) #f a l)))
; yyy uses seqrem
(define seqrem
(lambda (new old l)
l))
; It's rember! Let's test it.
;
(yyy
'sausage
'(pizza with sausage and bacon)) ; '(pizza with and bacon)
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; ;
; The ninth commandment ;
; ;
; Abstract common patterns with a new function. ;
; ;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; Remember the value function from Chapter 6 (06-shadows.ss)?
;
(define value
(lambda (nexp)
(cond
((atom? nexp) nexp)
((eq? (car (cdr nexp)) 'o+)
(+ (value (car nexp))
(value (car (cdr (cdr nexp))))))
((eq? (car (cdr nexp)) 'o*)
(* (value (car nexp))
(value (car (cdr (cdr nexp))))))
((eq? (car (cdr nexp)) 'o^)
(expt (value (car nexp))
(value (car (cdr (cdr nexp))))))
(else #f))))
; Let's abstract it
;
(define atom-to-function
(lambda (atom)
(cond
((eq? atom 'o+) +)
((eq? atom 'o*) *)
((eq? atom 'o^) expt)
(else #f))))
; atom-to-function uses operator
;
(define operator
(lambda (aexp)
(car aexp)))
; Example of atom-to-function
;
(atom-to-function (operator '(o+ 5 3))) ; + (function plus)
; The value function rewritten to use abstraction
;
(define value
(lambda (nexp)
(cond
((atom? nexp) nexp)
(else
((atom-to-function (operator nexp))
(value (1st-sub-exp nexp))
(value (2nd-sub-exp nexp)))))))
; value uses 1st-sub-exp
;
(define 1st-sub-exp
(lambda (aexp)
(car (cdr aexp))))
; value uses 2nd-sub-exp
(define 2nd-sub-exp
(lambda (aexp)
(car (cdr (cdr aexp)))))
; Test value
;
(value 13) ; 13
(value '(o+ 1 3)) ; 4
(value '(o+ 1 (o^ 3 4))) ; 82
; The multirember function from Chapter 3 (03-cons-the-magnificent.ss)
;
(define multirember
(lambda (a lat)
(cond
((null? lat) '())
((eq? (car lat) a)
(multirember a (cdr lat)))
(else
(cons (car lat) (multirember a (cdr lat)))))))
; The multirember-f is multirember with a possibility to curry f
;
(define multirember-f
(lambda (test?)
(lambda (a lat)
(cond
((null? lat) '())
((test? (car lat) a)
((multirember-f test?) a (cdr lat)))
(else
(cons (car lat) ((multirember-f test?) a (cdr lat))))))))
; Test multirember-f
;
((multirember-f eq?) 'tuna '(shrimp salad tuna salad and tuna))
; ==> '(shrimp salad salad and)
; Curry multirember-f with eq?
;
(define multirember-eq? (multirember-f eq?))
; The multiremberT changes the way test works
;
(define multiremberT
(lambda (test? lat)
(cond
((null? lat) '())
((test? (car lat))
(multiremberT test? (cdr lat)))
(else
(cons (car lat)
(multiremberT test? (cdr lat)))))))
; eq?-tuna tests if element is equal to 'tuna
;
(define eq?-tuna
(eq?-c 'tuna))
; Example of multiremberT
;
(multiremberT
eq?-tuna
'(shrimp salad tuna salad and tuna))
; ==> '(shrimp salad salad and)
; The multiremember&co uses a collector
;
(define multiremember&co
(lambda (a lat col)
(cond
((null? lat)
(col '() '()))
((eq? (car lat) a)
(multiremember&co a (cdr lat)
(lambda (newlat seen)
(col newlat (cons (car lat) seen)))))
(else
(multiremember&co a (cdr lat)
(lambda (newlat seen)
(col (cons (car lat) newlat) seen)))))))
; The friendly function
;
(define a-friend
(lambda (x y)
(null? y)))
; Examples of multiremember&co with friendly function
;
(multiremember&co
'tuna
'(strawberries tuna and swordfish)
a-friend)
; ==> #f
(multiremember&co
'tuna
'()
a-friend)
; ==> #t
(multiremember&co
'tuna
'(tuna)
a-friend)
; ==> #f
; The new friend function
;
(define new-friend
(lambda (newlat seen)
(a-friend newlat (cons 'tuna seen))))
; Examples of multiremember&co with the new friend function
;
(multiremember&co
'tuna
'(strawberries tuna and swordfish)
new-friend)
; ==> #f
(multiremember&co
'tuna
'()
new-friend)
; ==> #f
(multiremember&co
'tuna
'(tuna)
new-friend)
; ==> #f
; The last friend function
;
(define last-friend
(lambda (x y)
(length x)))
; Examples of multiremember&co with the last friend function
;
(multiremember&co
'tuna
'(strawberries tuna and swordfish)
last-friend)
; ==> 3
(multiremember&co
'tuna
'()
last-friend)
; ==> 0
(multiremember&co
'tuna
'(tuna)
last-friend)
; ==> 0
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; ;
; The tenth commandment ;
; ;
; Build functions to collect more than one value at a time. ;
; ;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; The multiinsertLR inserts to the left and to the right of elements
;
(define multiinsertLR
(lambda (new oldL oldR lat)
(cond
((null? lat) '())
((eq? (car lat) oldL)
(cons new
(cons oldL
(multiinsertLR new oldL oldR (cdr lat)))))
((eq? (car lat) oldR)
(cons oldR
(cons new
(multiinsertLR new oldL oldR (cdr lat)))))
(else
(cons
(car lat)
(multiinsertLR new oldL oldR (cdr lat)))))))
; Example of multiinsertLR
;
(multiinsertLR
'x
'a
'b
'(a o a o b o b b a b o))
; ==> '(x a o x a o b x o b x b x x a b x o)
; The multiinsertLR&co is to multiinsertLR what multirember is to
; multiremember&co
;
(define multiinsertLR&co
(lambda (new oldL oldR lat col)
(cond
((null? lat)
(col '() 0 0))
((eq? (car lat) oldL)
(multiinsertLR&co new oldL oldR (cdr lat)
(lambda (newlat L R)
(col (cons new (cons oldL newlat))
(+ 1 L) R))))
((eq? (car lat) oldR)
(multiinsertLR&co new oldL oldR (cdr lat)
(lambda (newlat L R)
(col (cons oldR (cons new newlat))
L (+ 1 R)))))
(else
(multiinsertLR&co new oldL oldR (cdr lat)
(lambda (newlat L R)
(col (cons (car lat) newlat)
L R)))))))
; Some collectors
;
(define col1
(lambda (lat L R)
lat))
(define col2
(lambda (lat L R)
L))
(define col3
(lambda (lat L R)
R))
; Examples of multiinsertLR&co
;
(multiinsertLR&co
'salty
'fish
'chips
'(chips and fish or fish and chips)
col1)
; ==> '(chips salty and salty fish or salty fish and chips salty)
(multiinsertLR&co
'salty
'fish
'chips
'(chips and fish or fish and chips)
col2)
; ==> 2
(multiinsertLR&co
'salty
'fish
'chips
'(chips and fish or fish and chips)
col3)
; ==> 2
; The evens-only* function leaves all even numbers in an sexpression
; (removes odd numbers)
;
(define evens-only*
(lambda (l)
(cond
((null? l) '())
((atom? (car l))
(cond
((even? (car l))
(cons (car l)
(evens-only* (cdr l))))
(else
(evens-only* (cdr l)))))
(else
(cons (evens-only* (car l))
(evens-only* (cdr l)))))))
; Example of evens-only*
;
(evens-only*
'((9 1 2 8) 3 10 ((9 9) 7 6) 2)) ; '((2 8) 10 (() 6) 2)
; Evens only function with a collector, collects evens, their product,
; and sum of odd numbers
;
(define evens-only*&co
(lambda (l col)
(cond
((null? l)
(col '() 1 0))
((atom? (car l))
(cond
((even? (car l))
(evens-only*&co (cdr l)
(lambda (newl p s)
(col (cons (car l) newl) (* (car l) p) s))))
(else
(evens-only*&co (cdr l)
(lambda (newl p s)
(col newl p (+ (car l) s)))))))
(else
(evens-only*&co (car l)
(lambda (al ap as)
(evens-only*&co (cdr l)
(lambda (dl dp ds)
(col (cons al dl)
(* ap dp)
(+ as ds))))))))))
; evens-friend returns collected evens
;
(define evens-friend
(lambda (e p s)
e))
; Example of evens-friend used
;
(evens-only*&co
'((9 1 2 8) 3 10 ((9 9) 7 6) 2)
evens-friend)
; ==> '((2 8) 10 (() 6) 2)
; evens-product-friend returns the product of evens
;
(define evens-product-friend
(lambda (e p s)
p))
; Example of evens-product-friend used
;
(evens-only*&co
'((9 1 2 8) 3 10 ((9 9) 7 6) 2)
evens-product-friend)
; ==> 1920
; evens-sum-friend returns the sum of odds
;
(define evens-sum-friend
(lambda (e p s)
s))
; Example of evens-sum-friend used
;
(evens-only*&co
'((9 1 2 8) 3 10 ((9 9) 7 6) 2)
evens-sum-friend)
; ==> 38
; the-last-friend returns sum, product and the list of evens consed together
;
(define the-last-friend
(lambda (e p s)
(cons s (cons p e))))
; Example of the-last-friend
;
(evens-only*&co
'((9 1 2 8) 3 10 ((9 9) 7 6) 2)
the-last-friend)
; ==> '(38 1920 (2 8) 10 (() 6) 2)
;
; Go get yourself this wonderful book and have fun with these examples!
;
; Shortened URL to the book at Amazon.com: http://bit.ly/4GjWdP
;
; Sincerely,
; Peteris Krumins
; http://www.catonmat.net
;