-
Notifications
You must be signed in to change notification settings - Fork 1
/
gps.cpp
864 lines (795 loc) · 39.2 KB
/
gps.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
#include <stdint.h>
#include <stdlib.h>
#include "hal.h"
#include "gps.h"
// #include "ctrl.h"
#include "nmea.h"
#include "ubx.h"
#ifdef WITH_MAVLINK
#include "mavlink.h"
#include "atmosphere.h"
#endif
#include "ogn.h"
// #include "ctrl.h"
// #include "knob.h"
#include "lowpass2.h"
// #define DEBUG_PRINT
#ifdef DEBUG_PRINT
static char Line[128];
#endif
// ----------------------------------------------------------------------------
// void Debug_Print(uint8_t Byte) { while(!UART1_TxEmpty()) taskYIELD(); UART1_TxChar(Byte); }
static NMEA_RxMsg NMEA; // NMEA sentences catcher
#ifdef WITH_GPS_UBX
static UBX_RxMsg UBX; // UBX messages catcher
#endif
#ifdef WITH_MAVLINK
static MAV_RxMsg MAV; // MAVlink message catcher
#endif
uint16_t GPS_PosPeriod = 0;
const uint8_t PosPipeIdxMask = GPS_PosPipeSize-1;
static GPS_Position Position[GPS_PosPipeSize]; // GPS position pipe
static uint8_t PosIdx; // Pipe index, increments with every GPS position received
static TickType_t Burst_TickCount; // [msec] TickCount when the data burst from GPS started
uint32_t GPS_TimeSinceLock; // [sec] time since the GPS has a lock
uint32_t GPS_FatTime = 0; // [sec] UTC date/time in FAT format
int32_t GPS_Altitude = 0; // [0.1m] last valid altitude
int32_t GPS_Latitude = 0; //
int32_t GPS_Longitude = 0; //
int16_t GPS_GeoidSepar= 0; // [0.1m]
uint16_t GPS_LatCosine = 3000; //
uint32_t GPS_Random = 0x12345678; // random number from the LSB of the GPS data
Status GPS_Status;
static union
{ uint8_t Flags;
struct
{ bool Spare:1; //
bool Active:1; // has started
bool GxRMC:1; // GPRMC or GNRMC registered
bool GxGGA:1; // GPGGA or GNGGA registered
bool GxGSA:1; // GPGSA or GNGSA registered
bool Complete:1; // all GPS data is supplied and thus ready for processing
} ;
} GPS_Burst;
// for the autobaud on the GPS port
const int GPS_BurstTimeout = 200; // [ms]
static const uint8_t BaudRates=7; // number of possible baudrates choices
static uint8_t BaudRateIdx=0; // actual choice
static const uint32_t BaudRate[BaudRates] = { 4800, 9600, 19200, 38400, 57600, 115200, 230400 } ; // list of baudrate the autobaud scans through
uint32_t GPS_getBaudRate (void) { return BaudRate[BaudRateIdx]; }
uint32_t GPS_nextBaudRate(void) { BaudRateIdx++; if(BaudRateIdx>=BaudRates) BaudRateIdx=0; return GPS_getBaudRate(); }
const uint32_t GPS_TargetBaudRate = 57600; // BaudRate[4]; // [bps] must be one of the baud rates known by the autbaud
const uint8_t GPS_TargetDynModel = 7; // for UBX GPS's: 6 = airborne with >1g, 7 = with >2g
// ----------------------------------------------------------------------------
int16_t GPS_AverageSpeed(void) // get average speed based on stored GPS positions
{ uint8_t Count=0;
int16_t Speed=0;
for(uint8_t Idx=0; Idx<GPS_PosPipeSize; Idx++) // loop over GPS positions
{ GPS_Position *Pos = Position+Idx;
if( !Pos->hasGPS || !Pos->isValid() ) continue; // skip invalid positions
Speed += Pos->Speed +abs(Pos->ClimbRate); Count++;
}
if(Count==0) return -1;
if(Count>1) Speed/=Count;
return Speed; } // [0.1m/s]
// ----------------------------------------------------------------------------
static void GPS_PPS_On(void) // called on rising edge of PPS
{ static TickType_t PrevTickCount=0;
TickType_t TickCount = xTaskGetTickCount(); // [ms] TickCount now
TickType_t Delta = TickCount-PrevTickCount; // [ms] time difference to the previous PPS
PrevTickCount = TickCount; // [ms]
if(abs((int)Delta-1000)>10) return; // [ms] filter out difference away from 1.00sec
TimeSync_HardPPS(TickCount);
#ifdef DEBUG_PRINT
xSemaphoreTake(CONS_Mutex, portMAX_DELAY);
Format_UnsDec(CONS_UART_Write, TimeSync_Time()%60);
CONS_UART_Write('.');
Format_UnsDec(CONS_UART_Write, TimeSync_msTime(),3);
Format_String(CONS_UART_Write, " -> PPS\n");
xSemaphoreGive(CONS_Mutex);
#endif
GPS_Status.PPS=1;
LED_PCB_Flash(50);
// uint8_t Sec=GPS_Sec; Sec++; if(Sec>=60) Sec=0; GPS_Sec=Sec;
// GPS_UnixTime++;
// #ifdef WITH_MAVLINK
// static MAV_SYSTEM_TIME MAV_Time;
// MAV_Time.time_unix_usec = (uint64_t)1000000*TimeSync_Time();
// MAV_Time.time_boot_ms = TickCount;
// xSemaphoreTake(CONS_Mutex, portMAX_DELAY);
// MAV_RxMsg::Send(sizeof(MAV_Time), MAV_Seq++, MAV_SysID, MAV_COMP_ID_GPS, MAV_ID_SYSTEM_TIME, (const uint8_t *)&MAV_Time, CONS_UART_Write);
// xSemaphoreGive(CONS_Mutex);
// #endif
}
static void GPS_PPS_Off(void) // called on falling edge of PPS
{ }
// ----------------------------------------------------------------------------
static void GPS_LockStart(void) // called when GPS catches a lock
{
#ifdef WITH_BEEPER
if(KNOB_Tick>12)
{ Play(Play_Vol_1 | Play_Oct_1 | 0x00, 100);
Play(Play_Vol_0 | Play_Oct_1 | 0x00, 100);
Play(Play_Vol_1 | Play_Oct_1 | 0x02, 100);
Play(Play_Vol_0 | Play_Oct_1 | 0x02, 100); }
#endif
}
static void GPS_LockEnd(void) // called when GPS looses a lock
{
#ifdef WITH_BEEPER
if(KNOB_Tick>12)
{ Play(Play_Vol_1 | Play_Oct_1 | 0x02, 100);
Play(Play_Vol_0 | Play_Oct_1 | 0x02, 100);
Play(Play_Vol_1 | Play_Oct_1 | 0x00, 100);
Play(Play_Vol_0 | Play_Oct_1 | 0x00, 100); }
#endif
}
// ----------------------------------------------------------------------------
static void GPS_BurstStart(void) // when GPS starts sending the data on the serial port
{ Burst_TickCount=xTaskGetTickCount();
#ifdef DEBUG_PRINT
xSemaphoreTake(CONS_Mutex, portMAX_DELAY);
Format_UnsDec(CONS_UART_Write, TimeSync_Time()%60);
CONS_UART_Write('.');
Format_UnsDec(CONS_UART_Write, TimeSync_msTime(),3);
Format_String(CONS_UART_Write, " -> GPS_BurstStart() GPS:");
Format_Hex(CONS_UART_Write, GPS_Status.Flags);
Format_String(CONS_UART_Write, "\n");
xSemaphoreGive(CONS_Mutex);
#endif
#ifdef WITH_GPS_CONFIG
static uint16_t QueryWait=0;
if(GPS_Status.NMEA || GPS_Status.UBX) // if there is communication with the GPS already
{ if(QueryWait)
{ QueryWait--; }
else
{ if(!GPS_Status.ModeConfig) // if GPS navigation mode is not done yet
{ // Format_String(CONS_UART_Write, "CFG_NAV5 query...\n");
#ifdef WITH_GPS_UBX
UBX_RxMsg::Send(0x06, 0x24, GPS_UART_Write); // send the query for the navigation mode setting
if(!GPS_Status.NMEA) // if NMEA sentences are not there
{ UBX_CFG_MSG CFG_MSG; // send CFG_MSG to enable the NMEA sentences
CFG_MSG.msgClass = 0xF0; // NMEA class
CFG_MSG.rate = 1; // send every measurement event
// CFG_MSG.rate[0] = 1;
// CFG_MSG.rate[1] = 1;
// CFG_MSG.rate[2] = 1;
// CFG_MSG.rate[3] = 1;
// CFG_MSG.rate[4] = 1;
// CFG_MSG.rate[5] = 1;
CFG_MSG.msgID = 0x00; // ID for GGA
UBX_RxMsg::Send(0x06, 0x01, GPS_UART_Write, (uint8_t *)(&CFG_MSG), sizeof(CFG_MSG));
CFG_MSG.msgID = 0x02; // ID for RMC
UBX_RxMsg::Send(0x06, 0x01, GPS_UART_Write, (uint8_t *)(&CFG_MSG), sizeof(CFG_MSG));
CFG_MSG.msgID = 0x04; // ID for GSA
UBX_RxMsg::Send(0x06, 0x01, GPS_UART_Write, (uint8_t *)(&CFG_MSG), sizeof(CFG_MSG));
}
#endif
}
if(!GPS_Status.BaudConfig) // if GPS baud config is not done yet
{ // Format_String(CONS_UART_Write, "CFG_PRT query...\n");
#ifdef WITH_GPS_UBX
// uint8_t UART1_Port=1;
// UBX_RxMsg::Send(0x06, 0x00, GPS_UART_Write, &UART1_Port, 1); // send the query for the port config to have a template configuration packet
UBX_RxMsg::Send(0x06, 0x00, GPS_UART_Write); // send the query for the port config to have a template configuration packet
#endif
#ifdef WITH_GPS_MTK
char GPS_Cmd[36];
strcpy(GPS_Cmd, "$PMTK251,"); // MTK command to change the baud rate
uint8_t Len = strlen(GPS_Cmd);
Len += Format_UnsDec(GPS_Cmd+Len, GPS_TargetBaudRate);
Len += NMEA_AppendCheck(GPS_Cmd, Len);
GPS_Cmd[Len++]='\r'; // this is apparently needed but it should not, as ESP32 does auto-CR ??
GPS_Cmd[Len++]='\n';
GPS_Cmd[Len]=0;
Format_String(GPS_UART_Write, GPS_Cmd, Len, 0);
#ifdef DEBUG_PRINT
xSemaphoreTake(CONS_Mutex, portMAX_DELAY);
Format_String(CONS_UART_Write, "GPS <- ");
Format_String(CONS_UART_Write, GPS_Cmd, Len, 0);
xSemaphoreGive(CONS_Mutex);
#endif
#endif
#ifdef WITH_GPS_SRF
char GPS_Cmd[36];
strcpy(GPS_Cmd, "$PSRF100,1,"); // SiRF command to change the baud rate
Len = strlen(GPS_Cmd);
Len += Format_UnsDec(GPS_Cmd+Len, GPS_TargetBaudRate);
strcpy(GPS_Cmd+Len, ",8,1,0");
Len = strlen(GPS_Cmd);
Len += NMEA_AppendCheck(GPS_Cmd, Len);
GPS_Cmd[Len++]='\r'; // this is apparently needed but it should not, as ESP32 does auto-CR ??
GPS_Cmd[Len++]='\n';
GPS_Cmd[Len]=0;
Format_String(GPS_UART_Write, GPS_Cmd, Len, 0);
#endif
}
QueryWait=60;
}
}
else { QueryWait=0; }
#endif // WITH_GPS_CONFIG
}
static void GPS_Random_Update(uint8_t Bit)
{ GPS_Random = (GPS_Random<<1) | (Bit&1); }
static void GPS_Random_Update(GPS_Position *Pos)
{ if(Position==0) return;
GPS_Random_Update(Pos->Altitude);
GPS_Random_Update(Pos->Speed);
GPS_Random_Update(Pos->Latitude);
GPS_Random_Update(Pos->Longitude);
if(Pos->hasBaro) GPS_Random_Update(Pos->Pressure);
XorShift32(GPS_Random); }
static void GPS_BurstComplete(void) // when GPS has sent the essential data for position fix
{
#ifdef WITH_MAVLINK
GPS_Position *GPS = Position+PosIdx;
if(GPS->hasTime && GPS->hasGPS && GPS->hasBaro)
{ int32_t StdAlt1 = Atmosphere::StdAltitude((GPS->Pressure+2)/4); // [0.1m] we try to fix the cheap chinese ArduPilot with baro chip cs5607 instead of cs5611
int32_t StdAlt2 = Atmosphere::StdAltitude((GPS->Pressure+1)/2); // [0.1m] the cx5607 is very close but gives pressure is twice as larger units
int32_t Alt = GPS->Altitude; // [0.1m] thus it appears to give pressure readout lower by a factor of two.
int32_t Delta1 = StdAlt1-Alt; // [0.1m] Here we check which pressure fits better the GPS altitude
int32_t Delta2 = StdAlt2-Alt; // [0.1m]
if(fabs(Delta1)<fabs(Delta2)) { GPS->StdAltitude=StdAlt1; } //
else { GPS->Pressure*=2; GPS->StdAltitude=StdAlt2; }
}
#endif
#ifdef DEBUG_PRINT
Position[PosIdx].PrintLine(Line); // print out the GPS position in a single-line format
xSemaphoreTake(CONS_Mutex, portMAX_DELAY);
Format_UnsDec(CONS_UART_Write, TimeSync_Time()%60, 2);
CONS_UART_Write('.');
Format_UnsDec(CONS_UART_Write, TimeSync_msTime(),3);
Format_String(CONS_UART_Write, " -> GPS_BurstComplete() GPS:");
Format_Hex(CONS_UART_Write, GPS_Status.Flags);
Format_String(CONS_UART_Write, "\nGPS");
CONS_UART_Write('0'+PosIdx); CONS_UART_Write(':'); CONS_UART_Write(' ');
Format_String(CONS_UART_Write, Line);
xSemaphoreGive(CONS_Mutex);
#endif
GPS_Random_Update(Position+PosIdx);
if(Position[PosIdx].hasGPS) // GPS position data complete
{ Position[PosIdx].isReady=1; // mark this record as ready for processing => producing packets for transmission
if(Position[PosIdx].isTimeValid()) // if time is valid already
{ if(Position[PosIdx].isDateValid()) // if date is valid as well
{ uint32_t UnixTime=Position[PosIdx].getUnixTime();
GPS_FatTime=Position[PosIdx].getFatTime();
#ifndef WITH_MAVLINK // with MAVlink we sync. with the SYSTEM_TIME message
TimeSync_SoftPPS(Burst_TickCount, UnixTime, Parameters.PPSdelay);
#endif
}
}
if(Position[PosIdx].isValid()) // position is complete and locked
{ if(Parameters.manGeoidSepar) // if GeoidSepar is "manual" - this implies the GPS does not correct for it
{ Position[PosIdx].GeoidSeparation = Parameters.GeoidSepar; // copy the manually set GeoidSepar
Position[PosIdx].Altitude -= Parameters.GeoidSepar; } // correct the Altitude - we likely need a separate flag for this
Position[PosIdx].calcLatitudeCosine();
GPS_TimeSinceLock++;
GPS_Altitude=Position[PosIdx].Altitude;
GPS_Latitude=Position[PosIdx].Latitude;
GPS_Longitude=Position[PosIdx].Longitude;
GPS_GeoidSepar=Position[PosIdx].GeoidSeparation;
GPS_LatCosine=Position[PosIdx].LatitudeCosine;
// GPS_FreqPlan=Position[PosIdx].getFreqPlan();
if(GPS_TimeSinceLock==1) // if we just acquired the lock a moment ago
{ GPS_LockStart(); }
if(GPS_TimeSinceLock>1) // if the lock is more persistant
{ uint8_t PrevIdx=(PosIdx+PosPipeIdxMask)&PosPipeIdxMask;
int16_t TimeDiff = Position[PosIdx].calcTimeDiff(Position[PrevIdx]);
for( ; ; )
{ if(TimeDiff>=95) break;
uint8_t PrevIdx2=(PrevIdx+PosPipeIdxMask)&PosPipeIdxMask;
if(PrevIdx2==PosIdx) break;
if(!Position[PrevIdx2].isValid()) break;
TimeDiff = Position[PosIdx].calcTimeDiff(Position[PrevIdx2]);
PrevIdx=PrevIdx2; }
TimeDiff=Position[PosIdx].calcDifferences(Position[PrevIdx]);
#ifdef DEBUG_PRINT
xSemaphoreTake(CONS_Mutex, portMAX_DELAY);
Format_String(CONS_UART_Write, "calcDiff() => ");
Format_UnsDec(CONS_UART_Write, (uint16_t)PosIdx);
Format_String(CONS_UART_Write, "->");
Format_UnsDec(CONS_UART_Write, (uint16_t)PrevIdx);
CONS_UART_Write(' ');
Format_SignDec(CONS_UART_Write, TimeDiff, 3, 2);
Format_String(CONS_UART_Write, "s\n");
xSemaphoreGive(CONS_Mutex);
#endif
LED_PCB_Flash(200); }
}
else // complete but no valid lock
{ if(GPS_TimeSinceLock) { GPS_LockEnd(); GPS_TimeSinceLock=0; }
}
// #ifdef WITH_MAVLINK
// static MAV_GPS_RAW_INT MAV_Position;
// Position[PosIdx].Encode(MAV_Position);
// xSemaphoreTake(CONS_Mutex, portMAX_DELAY);
// MAV_RxMsg::Send(sizeof(MAV_Position), MAV_Seq++, MAV_SysID, MAV_COMP_ID_GPS, MAV_ID_GPS_RAW_INT, (const uint8_t *)&MAV_Position, CONS_UART_Write);
// xSemaphoreGive(CONS_Mutex);
// #endif
}
else // posiiton not complete, no GPS lock
{ if(GPS_TimeSinceLock) { GPS_LockEnd(); GPS_TimeSinceLock=0; }
}
uint8_t NextPosIdx = (PosIdx+1)&PosPipeIdxMask; // next position to be recorded
if( Position[PosIdx].isTimeValid() && Position[NextPosIdx].isTimeValid() )
{ int16_t Period = Position[PosIdx].calcTimeDiff(Position[NextPosIdx]);
if(Period>0) GPS_PosPeriod = (Period+GPS_PosPipeSize/2)/(GPS_PosPipeSize-1);
#ifdef DEBUG_PRINT
xSemaphoreTake(CONS_Mutex, portMAX_DELAY);
Format_String(CONS_UART_Write,"GPS");
CONS_UART_Write('0'+PosIdx); CONS_UART_Write(':'); CONS_UART_Write(' ');
Format_UnsDec(CONS_UART_Write, (uint16_t)Position[PosIdx].Sec, 2);
CONS_UART_Write('.');
Format_UnsDec(CONS_UART_Write, (uint16_t)Position[PosIdx].FracSec, 2);
Format_String(CONS_UART_Write, "s ");
Format_SignDec(CONS_UART_Write, Period, 3, 2);
Format_String(CONS_UART_Write, "s\n");
xSemaphoreGive(CONS_Mutex);
#endif
}
Position[NextPosIdx].Clear(); // clear the next position
// int8_t Sec = Position[PosIdx].Sec; //
// Sec++; if(Sec>=60) Sec=0;
// Position[NextPosIdx].Sec=Sec; // set the correct time for the next position
Position[NextPosIdx].copyTime(Position[PosIdx]); // copy time from current position
Position[NextPosIdx].incrTime(); // increment time by 1 sec
// Position[NextPosIdx].copyDate(Position[PosIdx]);
PosIdx=NextPosIdx; // advance the index
}
static void GPS_BurstEnd(void) // when GPS stops sending the data on the serial port
{ }
// ----------------------------------------------------------------------------
GPS_Position *GPS_getPosition(uint8_t &BestIdx, int16_t &BestRes, int8_t Sec, int8_t Frac) // return GPS position closest to the given Sec.Frac
{ int16_t TargetTime = Frac+(int16_t)Sec*100;
BestIdx=0; BestRes=0x7FFF;
for(uint8_t Idx=0; Idx<GPS_PosPipeSize; Idx++)
{ GPS_Position *Pos=Position+Idx;
if(!Pos->isReady) continue;
int16_t Diff = TargetTime - (Pos->FracSec + (int16_t)Pos->Sec*100);
if(Diff<(-3000)) Diff+=6000;
else if(Diff>3000) Diff-=6000;
if(fabs(Diff)<fabs(BestRes)) { BestRes=Diff; BestIdx=Idx; }
}
return BestRes==0x7FFF ? 0:Position+BestIdx; }
GPS_Position *GPS_getPosition(void) // return most recent GPS_Position which has time/position data
{ uint8_t PrevIdx=PosIdx;
GPS_Position *PrevPos = Position+PrevIdx;
if(PrevPos->isReady) return PrevPos;
PrevIdx=(PrevIdx+PosPipeIdxMask)&PosPipeIdxMask;
PrevPos = Position+PrevIdx;
if(PrevPos->isReady) return PrevPos;
return 0; }
GPS_Position *GPS_getPosition(int8_t Sec) // return the GPS_Position which corresponds to given Sec (may be incomplete and not valid)
{ for(uint8_t Idx=0; Idx<GPS_PosPipeSize; Idx++)
{ int8_t PosSec = Position[Idx].Sec; if(Position[Idx].FracSec>=50) { PosSec++; if(PosSec>=60) PosSec-=60; }
if(Sec==PosSec) return Position+Idx; }
return 0; }
// ----------------------------------------------------------------------------
static void GPS_NMEA(void) // when GPS gets a correct NMEA sentence
{ GPS_Status.NMEA=1;
GPS_Status.BaudConfig = (GPS_getBaudRate() == GPS_TargetBaudRate);
LED_PCB_Flash(2); // Flash the LED for 2 ms
Position[PosIdx].ReadNMEA(NMEA); // read position elements from NMEA
if(NMEA.isGxRMC()) GPS_Burst.GxRMC=1;
if(NMEA.isGxGGA()) GPS_Burst.GxGGA=1;
if(NMEA.isGxGSA()) GPS_Burst.GxGSA=1;
#ifdef DEBUG_PRINT
xSemaphoreTake(CONS_Mutex, portMAX_DELAY);
Format_UnsDec(CONS_UART_Write, TimeSync_Time()%60);
CONS_UART_Write('.');
Format_UnsDec(CONS_UART_Write, TimeSync_msTime(),3);
Format_String(CONS_UART_Write, " -> ");
Format_Bytes(CONS_UART_Write, NMEA.Data, 6);
CONS_UART_Write(' '); Format_Hex(CONS_UART_Write, GPS_Burst.Flags);
Format_String(CONS_UART_Write, "\n");
xSemaphoreGive(CONS_Mutex);
#endif
#ifndef WITH_GPS_NMEA_PASS
// these NMEA from GPS we want to pass to the console
if( NMEA.isP() || NMEA.isGxRMC() || NMEA.isGxGGA() || NMEA.isGxGSA() || NMEA.isGPTXT() )
// we would need to patch the GGA here for the GPS which does not calc. nor correct for GeoidSepar
#endif
{ // if(CONS_UART_Free()>=128)
{ xSemaphoreTake(CONS_Mutex, portMAX_DELAY);
Format_String(CONS_UART_Write, (const char *)NMEA.Data, 0, NMEA.Len);
Format_String(CONS_UART_Write, "\n");
xSemaphoreGive(CONS_Mutex); }
#ifdef WITH_SDLOG
if(Log_Free()>=128)
{ xSemaphoreTake(Log_Mutex, portMAX_DELAY);
Format_String(Log_Write, (const char *)NMEA.Data, 0, NMEA.Len);
Log_Write('\n');
xSemaphoreGive(Log_Mutex); }
#endif
}
}
#ifdef WITH_GPS_UBX
#ifdef DEBUG_PRINT
static void DumpUBX(void)
{ Format_String(CONS_UART_Write, "UBX: ");
Format_UnsDec(CONS_UART_Write, xTaskGetTickCount(), 6, 3);
CONS_UART_Write(' '); Format_Hex(CONS_UART_Write, UBX.Class);
CONS_UART_Write(':'); Format_Hex(CONS_UART_Write, UBX.ID);
CONS_UART_Write('_'); Format_UnsDec(CONS_UART_Write, (uint16_t)UBX.Bytes);
for(uint8_t Idx=0; Idx<UBX.Bytes; Idx++)
{ CONS_UART_Write(' '); Format_Hex(CONS_UART_Write, UBX.Byte[Idx]); }
Format_String(CONS_UART_Write, "\n"); }
#endif // DEBUG_PRINT
static void GPS_UBX(void) // when GPS gets an UBX packet
{ GPS_Status.UBX=1;
GPS_Status.BaudConfig = (GPS_getBaudRate() == GPS_TargetBaudRate);
LED_PCB_Flash(2);
// DumpUBX();
// Position[PosIdx].ReadUBX(UBX);
#ifdef WITH_GPS_UBX_PASS
{ xSemaphoreTake(CONS_Mutex, portMAX_DELAY); // send ther UBX packet to the console
UBX.Send(CONS_UART_Write);
// DumpUBX();
// Format_String(CONS_UART_Write, "UBX");
// Format_Hex(CONS_UART_Write, UBX.Class);
// Format_Hex(CONS_UART_Write, UBX.ID);
xSemaphoreGive(CONS_Mutex); }
#endif
#ifdef WITH_GPS_CONFIG
if(UBX.isCFG_PRT()) // if port configuration
{ class UBX_CFG_PRT *CFG = (class UBX_CFG_PRT *)UBX.Word; // create pointer to the packet content
#ifdef DEBUG_PRINT
xSemaphoreTake(CONS_Mutex, portMAX_DELAY);
Format_String(CONS_UART_Write, "TaskGPS: CFG_PRT\n");
DumpUBX();
Format_Hex(CONS_UART_Write, CFG->portID);
CONS_UART_Write(':');
Format_UnsDec(CONS_UART_Write, CFG->baudRate);
Format_String(CONS_UART_Write, "bps\n");
xSemaphoreGive(CONS_Mutex);
#endif
if(CFG->baudRate==GPS_TargetBaudRate) GPS_Status.BaudConfig=1; // if baudrate same as our target then declare the baud config is done
else // otherwise use the received packet as the template
{ CFG->baudRate=GPS_TargetBaudRate; // set the baudrate to our target
CFG->outProtoMask|=0x02; // enable NMEA protocol
UBX.RecalcCheck(); // reclaculate the check sum
#ifdef DEBUG_PRINT
xSemaphoreTake(CONS_Mutex, portMAX_DELAY);
Format_UnsDec(CONS_UART_Write, GPS_TargetBaudRate);
Format_String(CONS_UART_Write, "bps\n");
DumpUBX();
xSemaphoreGive(CONS_Mutex);
#endif
UBX.Send(GPS_UART_Write); // send this UBX packet to the GPS
}
}
if(UBX.isCFG_NAV5()) // Navigation config
{ class UBX_CFG_NAV5 *CFG = (class UBX_CFG_NAV5 *)UBX.Word;
#ifdef DEBUG_PRINT
xSemaphoreTake(CONS_Mutex, portMAX_DELAY);
Format_String(CONS_UART_Write, "TaskGPS: CFG_NAV5 ");
Format_Hex(CONS_UART_Write, CFG->dynModel);
Format_String(CONS_UART_Write, "\n");
xSemaphoreGive(CONS_Mutex);
#endif
if(CFG->dynModel==GPS_TargetDynModel) GPS_Status.ModeConfig=1; // dynamic model = 6 => Airborne with >1g acceleration
else
{ CFG->dynModel=GPS_TargetDynModel; CFG->mask = 0x01; //
UBX.RecalcCheck(); // reclaculate the check sum
UBX.Send(GPS_UART_Write); // send this UBX packet
}
}
#ifdef DEBUG_PRINT
if(UBX.isACK())
{ xSemaphoreTake(CONS_Mutex, portMAX_DELAY);
Format_String(CONS_UART_Write, "TaskGPS: ACK_ ");
Format_Hex(CONS_UART_Write, UBX.ID);
CONS_UART_Write(' ');
Format_Hex(CONS_UART_Write, UBX.Byte[0]);
CONS_UART_Write(':');
Format_Hex(CONS_UART_Write, UBX.Byte[1]);
Format_String(CONS_UART_Write, "\n");
xSemaphoreGive(CONS_Mutex);
/*
if(UBX.Byte[0]==0x06 && UBX.Byte[1]==0x00 && UBX.ID==0) // negative ACK to CFG-PRT
{ static char GPS_Cmd[36];
strcpy(GPS_Cmd, "$PUBX,41,1,0007,0003,"); // $PUBX command to change the baud rate
uint8_t Len = strlen(GPS_Cmd);
Len += Format_UnsDec(GPS_Cmd+Len, GPS_TargetBaudRate);
GPS_Cmd[Len++]=','; GPS_Cmd[Len++]='0';
Len += NMEA_AppendCheck(GPS_Cmd, Len);
GPS_Cmd[Len++]='\n';
GPS_Cmd[Len]=0;
Format_String(GPS_UART_Write, GPS_Cmd, Len, 0);
Format_String(CONS_UART_Write, GPS_Cmd, Len, 0);
}
*/
/*
{ UBX_CFG_PRT Cmd =
{ portID:1, // 0 = I2C, 1 = UART1, 2 = UART2, 3 = USB, 4 = SPI
reserved0:0,
txReady:0,
mode:0x08D0, // 00 10x x 11 x 1 xxxx => 0x08D0
baudRate:GPS_TargetBaudRate, // [bps]
inProtoMask:7, // bit 0:UBX, bit 1:NMEA
outProtoMask:3, // bit 0:UBX, bit 1:NMEA
reserved4:0,
reserved5:0,
} ;
UBX_RxMsg::Send(0x06, 0x00, GPS_UART_Write, (uint8_t*)&Cmd, sizeof(Cmd));
}
*/
}
#endif
#endif // WITH_GPS_CONFIG
}
#endif // WITH_GPS_UBX
#ifdef WITH_MAVLINK
static int64_t MAV_TimeOfs_ms=0; // [ms] diff. between UTC time and boot time reported in MAV messages
static uint64_t MAV_getUnixTime(void) // [ms] extract time from the MAVlink message
{ int32_t TimeCorr_ms = (int32_t)Parameters.TimeCorr*1000; // [ms] apparently ArduPilot needs some time correction, as it "manually" converts from GPS to UTC time
uint8_t MsgID = MAV.getMsgID();
if(MsgID==MAV_ID_SYSTEM_TIME) return ((const MAV_SYSTEM_TIME *)MAV.getPayload())->time_unix_usec/1000 + TimeCorr_ms;
if(MsgID==MAV_ID_GLOBAL_POSITION_INT) return ((const MAV_GLOBAL_POSITION_INT *)MAV.getPayload())->time_boot_ms + MAV_TimeOfs_ms;
if(MsgID==MAV_ID_SCALED_PRESSURE) return ((const MAV_SCALED_PRESSURE *)MAV.getPayload())->time_boot_ms + MAV_TimeOfs_ms;
uint64_t UnixTime_ms = 0;
// if(MsgID==MAV_ID_RAW_IMU) UnixTime_ms = ((const MAV_RAW_IMU *)MAV.getPayload())->time_usec/1000;
if(MsgID==MAV_ID_GPS_RAW_INT) UnixTime_ms = ((const MAV_GPS_RAW_INT *)MAV.getPayload())->time_usec/1000;
if(UnixTime_ms==0) return UnixTime_ms;
if(UnixTime_ms<1000000000000) UnixTime_ms += MAV_TimeOfs_ms;
else UnixTime_ms += TimeCorr_ms;
return UnixTime_ms; }
static void GPS_MAV(void) // when GPS gets an MAV packet
{ TickType_t TickCount=xTaskGetTickCount();
GPS_Status.MAV=1;
LED_PCB_Flash(2);
GPS_Status.BaudConfig = (GPS_getBaudRate() == GPS_TargetBaudRate);
uint8_t MsgID = MAV.getMsgID();
uint64_t UnixTime_ms = MAV_getUnixTime(); // get the time from the MAVlink message
if( (MsgID!=MAV_ID_SYSTEM_TIME) && UnixTime_ms)
{ if(Position[PosIdx].hasTime)
{ uint64_t PrevUnixTime_ms = Position[PosIdx].getUnixTime_ms();
int32_t TimeDiff_ms = UnixTime_ms-PrevUnixTime_ms;
#ifdef DEBUG_PRINT
xSemaphoreTake(CONS_Mutex, portMAX_DELAY);
Format_String(CONS_UART_Write, "MAV_TimeDiff: ");
Format_UnsDec(CONS_UART_Write, (uint16_t)MsgID, 3); CONS_UART_Write(' ');
Format_SignDec(CONS_UART_Write, TimeDiff_ms, 3);
Format_String(CONS_UART_Write, "\n");
xSemaphoreGive(CONS_Mutex);
#endif
if(TimeDiff_ms>GPS_BurstTimeout) GPS_BurstComplete();
}
}
if(MsgID==MAV_ID_HEARTBEAT)
{ const MAV_HEARTBEAT *Heartbeat = (const MAV_HEARTBEAT *)MAV.getPayload();
#ifdef DEBUG_PRINT
xSemaphoreTake(CONS_Mutex, portMAX_DELAY);
Format_String(CONS_UART_Write, "MAV_HEARTBEAT: ");
Format_Hex(CONS_UART_Write, Heartbeat->system_status);
Format_String(CONS_UART_Write, "\n");
xSemaphoreGive(CONS_Mutex);
#endif
} else if(MsgID==MAV_ID_SYSTEM_TIME)
{ const MAV_SYSTEM_TIME *SysTime = (const MAV_SYSTEM_TIME *)MAV.getPayload();
uint32_t UnixTime = UnixTime_ms/1000; // [ s] Unix Time
uint32_t UnixFrac = UnixTime_ms-(uint64_t)UnixTime*1000; // [ms] Second fraction of the Unix time
MAV_TimeOfs_ms=UnixTime_ms-SysTime->time_boot_ms; // [ms] difference between the Unix Time and the Ardupilot time-since-boot
TimeSync_SoftPPS(TickCount-UnixFrac, UnixTime, 70);
#ifdef DEBUG_PRINT
xSemaphoreTake(CONS_Mutex, portMAX_DELAY);
Format_String(CONS_UART_Write, "MAV_SYSTEM_TIME: ");
Format_UnsDec(CONS_UART_Write, UnixTime, 10);
CONS_UART_Write('.');
Format_UnsDec(CONS_UART_Write, UnixFrac, 3);
CONS_UART_Write(' ');
Format_SignDec(CONS_UART_Write, MAV_TimeOfs_ms, 13, 3);
Format_String(CONS_UART_Write, "\n");
xSemaphoreGive(CONS_Mutex);
#endif
} else if(MsgID==MAV_ID_GLOBAL_POSITION_INT) // position based on GPS and inertial sensors
{ const MAV_GLOBAL_POSITION_INT *Pos = (const MAV_GLOBAL_POSITION_INT *)MAV.getPayload();
Position[PosIdx].Read(Pos, UnixTime_ms); // read position/altitude/speed/etc. into GPS_Position structure
#ifdef DEBUG_PRINT
Position[PosIdx].PrintLine(Line);
xSemaphoreTake(CONS_Mutex, portMAX_DELAY);
Format_String(CONS_UART_Write, "MAV_GLOBAL_POSITION_INT: ");
Format_UnsDec(CONS_UART_Write, UnixTime_ms, 13, 3);
Format_String(CONS_UART_Write, "\nGPS"); CONS_UART_Write('0'+PosIdx); CONS_UART_Write(':'); CONS_UART_Write(' ');
Format_String(CONS_UART_Write, Line);
xSemaphoreGive(CONS_Mutex);
#endif
} else if(MsgID==MAV_ID_GPS_RAW_INT) // position form the GPS
{ const MAV_GPS_RAW_INT *RawGPS = (const MAV_GPS_RAW_INT *)MAV.getPayload();
Position[PosIdx].Read(RawGPS, UnixTime_ms); // read position/altitude/speed/etc. into GPS_Position structure
#ifdef DEBUG_PRINT
Position[PosIdx].PrintLine(Line);
uint32_t UnixTime = (UnixTime_ms+500)/1000;
int32_t TimeDiff = (int64_t)UnixTime_ms-(int64_t)UnixTime*1000;
xSemaphoreTake(CONS_Mutex, portMAX_DELAY);
Format_String(CONS_UART_Write, "MAV_GPS_RAW_INT: ");
Format_UnsDec(CONS_UART_Write, UnixTime_ms, 13, 3);
CONS_UART_Write(' ');
Format_SignDec(CONS_UART_Write, TimeDiff, 4, 3);
CONS_UART_Write(abs(TimeDiff)<250 ? '*':' ');
Format_String(CONS_UART_Write, "\nGPS"); CONS_UART_Write('0'+PosIdx); CONS_UART_Write(':'); CONS_UART_Write(' ');
Format_String(CONS_UART_Write, Line);
xSemaphoreGive(CONS_Mutex);
#endif
} else if(MsgID==MAV_ID_SCALED_PRESSURE)
{ const MAV_SCALED_PRESSURE *Press = (const MAV_SCALED_PRESSURE *)MAV.getPayload();
// uint64_t UnixTime_ms = Press->time_boot_ms + MAV_TimeOfs_ms;
Position[PosIdx].Read(Press, UnixTime_ms);
#ifdef DEBUG_PRINT
Position[PosIdx].PrintLine(Line);
xSemaphoreTake(CONS_Mutex, portMAX_DELAY);
Format_String(CONS_UART_Write, "MAV_SCALED_PRESSURE: ");
Format_UnsDec(CONS_UART_Write, UnixTime_ms, 13, 3);
Format_String(CONS_UART_Write, "\nGPS"); CONS_UART_Write('0'+PosIdx); CONS_UART_Write(':'); CONS_UART_Write(' ');
Format_String(CONS_UART_Write, Line);
xSemaphoreGive(CONS_Mutex);
#endif
} else if(MsgID==MAV_ID_SYS_STATUS)
{ const MAV_SYS_STATUS *Status = (const MAV_SYS_STATUS *)MAV.getPayload();
#ifdef DEBUG_PRINT
xSemaphoreTake(CONS_Mutex, portMAX_DELAY);
Format_String(CONS_UART_Write, "MAV_SYS_STATUS: ");
Format_UnsDec(CONS_UART_Write, Status->battery_voltage, 4, 3);
Format_String(CONS_UART_Write, "V ");
Format_SignDec(CONS_UART_Write, Status->battery_current, 3, 2);
Format_String(CONS_UART_Write, "A\n");
xSemaphoreGive(CONS_Mutex);
#endif
// } else if(MsgID==MAV_ID_STATUSTEXT)
// {
}
#ifdef DEBUG_PRINT
else
{ xSemaphoreTake(CONS_Mutex, portMAX_DELAY);
Format_String(CONS_UART_Write, "MAV: MsgID=");
Format_UnsDec(CONS_UART_Write, (uint16_t)MAV.getMsgID(), 3);
Format_String(CONS_UART_Write, "\n");
xSemaphoreGive(CONS_Mutex);
}
#endif
}
#endif
// ----------------------------------------------------------------------------
// Baud setting for SIRF GPS:
// 9600/8/N/1 $PSRF100,1,9600,8,1,0*0D<cr><lf>
// 19200/8/N/1 $PSRF100,1,19200,8,1,0*38<cr><lf>
// 38400/8/N/1 $PSRF100,1,38400,8,1,0*3D<cr><lf>
// $PSRF100,1,57600,8,1,0*36
// $PSRF100,1,115200,8,1,0*05
// static const char *SiRF_SetBaudrate_57600 = "$PSRF100,1,57600,8,1,0*36\r\n";
// static const char *SiRF_SetBaudrate_115200 = "$PSRF100,1,115200,8,1,0*05\r\n";
// Baud setting for MTK GPS:
// $PMTK251,38400*27<CR><LF>
// $PMTK251,57600*2C<CR><LF>
// $PMTK251,115200*1F<CR><LF>
// Baud setting for UBX GPS:
// $PUBX,41,1,0007,0003,9600,0*10<CR><LF>
// $PUBX,41,1,0007,0003,38400,0*20<CR><LF>
// static const char *MTK_SetBaudrate_115200 = "$PMTK251,115200*1F\r\n";
// Baud setting for UBX GPS:
// "$PUBX,41,1,0003,0001,19200,0*23\r\n"
// "$PUBX,41,1,0003,0001,38400,0*26\r\n"
// "$PUBX,41,1,0003,0001,57600,0*2D\r\n"
// static const char *UBX_SetBaudrate_115200 = "$PUBX,41,1,0003,0001,115200,0*1E\r\n";
// ----------------------------------------------------------------------------
#ifdef __cplusplus
extern "C"
#endif
void vTaskGPS(void* pvParameters)
{
GPS_Status.Flags = 0;
// PPS_TickCount=0;
Burst_TickCount=0;
vTaskDelay(250); // put some initial delay for lighter startup load
xSemaphoreTake(CONS_Mutex, portMAX_DELAY);
Format_String(CONS_UART_Write, "TaskGPS:");
Format_String(CONS_UART_Write, "\n");
xSemaphoreGive(CONS_Mutex);
GPS_Burst.Flags=0;
bool PPS=0;
int LineIdle=0; // [ms] counts idle time for the GPS data
int NoValidData=0; // [ms] count time without valid data (to decide to change baudrate)
NMEA.Clear();
#ifdef WITH_GPS_UBX
UBX.Clear(); // scans GPS input for NMEA and UBX frames
#endif
#ifdef WITH_MAVLINK
MAV.Clear();
#endif
for(uint8_t Idx=0; Idx<4; Idx++)
Position[Idx].Clear();
PosIdx=0;
TickType_t RefTick = xTaskGetTickCount();
for( ; ; ) // main task loop: every milisecond (RTOS time tick)
{ vTaskDelay(1); // wait for the next time tick (but apparently it can wait more than one OS tick)
TickType_t NewTick = xTaskGetTickCount();
TickType_t Delta = NewTick-RefTick;
RefTick = NewTick;
/*
#ifdef DEBUG_PRINT
if(Delta>1)
{ xSemaphoreTake(CONS_Mutex, portMAX_DELAY);
Format_UnsDec(CONS_UART_Write, TimeSync_Time(RefTick)%60);
CONS_UART_Write('.');
Format_UnsDec(CONS_UART_Write, TimeSync_msTime(RefTick),3);
Format_String(CONS_UART_Write, " -> ");
Format_UnsDec(CONS_UART_Write, Delta);
Format_String(CONS_UART_Write, "t\n");
xSemaphoreGive(CONS_Mutex); }
#endif
*/
#ifdef WITH_GPS_PPS
if(GPS_PPS_isOn()) { if(!PPS) { PPS=1; GPS_PPS_On(); } } // monitor GPS PPS signal
else { if( PPS) { PPS=0; GPS_PPS_Off(); } } // and call handling calls
#endif
LineIdle+=Delta; // count idle time
NoValidData+=Delta; // count time without any valid NMEA nor UBX packet
uint16_t Bytes=0;
uint16_t MaxBytesPerTick = 1+(GPS_getBaudRate()+2500)/5000;
for( ; ; ) // loop over bytes in the GPS UART buffer
{ uint8_t Byte; int Err=GPS_UART_Read(Byte); if(Err<=0) break; // get Byte from serial port, if no bytes then break this loop
Bytes++;
LineIdle=0; // if there was a byte: restart idle counting
NMEA.ProcessByte(Byte); // process through the NMEA interpreter
#ifdef WITH_GPS_UBX
UBX.ProcessByte(Byte);
#endif
#ifdef WITH_MAVLINK
MAV.ProcessByte(Byte);
#endif
if(NMEA.isComplete()) // NMEA completely received ?
{ if(NMEA.isChecked()) { GPS_NMEA(); NoValidData=0; } // NMEA check sum is correct ?
NMEA.Clear(); break; }
#ifdef WITH_GPS_UBX
if(UBX.isComplete()) { GPS_UBX(); NoValidData=0; UBX.Clear(); break; }
#endif
#ifdef WITH_MAVLINK
if(MAV.isComplete()) { GPS_MAV(); NoValidData=0; MAV.Clear(); break; }
#endif
if(Bytes>=MaxBytesPerTick) break;
}
/*
#ifdef DEBUG_PRINT
if(Bytes)
{ xSemaphoreTake(CONS_Mutex, portMAX_DELAY);
Format_UnsDec(CONS_UART_Write, TimeSync_Time(RefTick)%60);
CONS_UART_Write('.');
Format_UnsDec(CONS_UART_Write, TimeSync_msTime(RefTick),3);
Format_String(CONS_UART_Write, "..");
Format_UnsDec(CONS_UART_Write, TimeSync_Time()%60);
CONS_UART_Write('.');
Format_UnsDec(CONS_UART_Write, TimeSync_msTime(),3);
Format_String(CONS_UART_Write, " -> ");
Format_UnsDec(CONS_UART_Write, Bytes);
Format_String(CONS_UART_Write, "B\n");
xSemaphoreGive(CONS_Mutex); }
#endif
*/
if(LineIdle==0) // if any bytes were received ?
{ if(!GPS_Burst.Active) GPS_BurstStart(); // burst started
GPS_Burst.Active=1;
if( (!GPS_Burst.Complete) && (GPS_Burst.GxGGA && GPS_Burst.GxRMC && GPS_Burst.GxGSA) )
{ GPS_Burst.Complete=1; GPS_BurstComplete(); }
}
else if(LineIdle>=GPS_BurstTimeout) // if GPS sends no more data for 10 time ticks
{ if(GPS_Burst.Active) // if still in burst
{ if(!GPS_Burst.Complete) GPS_BurstComplete();
GPS_BurstEnd(); } // burst just ended
else if(LineIdle>=1500) // if idle for more than 1.5 sec
{ GPS_Status.Flags=0; }
GPS_Burst.Flags=0;
}
if(NoValidData>=2000) // if no valid data from GPS for 1sec
{ GPS_Status.Flags=0; GPS_Burst.Flags=0; // assume GPS state is unknown
uint32_t NewBaudRate = GPS_nextBaudRate(); // switch to the next baud rate
xSemaphoreTake(CONS_Mutex, portMAX_DELAY);
Format_String(CONS_UART_Write, "TaskGPS: ");
Format_UnsDec(CONS_UART_Write, NewBaudRate);
Format_String(CONS_UART_Write, "bps\n");
xSemaphoreGive(CONS_Mutex);
GPS_UART_SetBaudrate(NewBaudRate);
NoValidData=0;
}
}
}