forked from KapLex/PGE
-
Notifications
You must be signed in to change notification settings - Fork 0
/
pgeVram.c
241 lines (198 loc) · 6.74 KB
/
pgeVram.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
/*
* This file is part of "Phoenix Game Engine".
*
* Copyright (C) 2008 Phoenix Game Engine
* Copyright (C) 2008 InsertWittyName <[email protected]>
* Copyright (C) 2008 MK2k <[email protected]>
*
* Phoenix Game Engine is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
* Phoenix Game Engine is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License
* along with Phoenix Game Engine. If not, see <http://www.gnu.org/licenses/>.
*
*/
#include "pgeVram.h"
// Configure the memory to be managed
#define __MEM_SIZE 0x00200000
#define __MEM_START 0x04000000
// Configure the block size the memory gets subdivided into (page size)
// __MEM_SIZE/__BLOCK_SIZE may not exceed 2^15 = 32768
// The block size also defines the alignment of allocations
// Larger block sizes perform better, because the blocktable is smaller and therefore fits better into cache
// however the overhead is also bigger and more memory is wasted
#define __BLOCK_SIZE 512
#define __MEM_BLOCKS (__MEM_SIZE/__BLOCK_SIZE)
#define __BLOCKS(x) ((x+__BLOCK_SIZE-1)/__BLOCK_SIZE)
#define __BLOCKSIZE(x) ((x+__BLOCK_SIZE-1)&~(__BLOCK_SIZE-1))
// A MEMORY BLOCK ENTRY IS MADE UP LIKE THAT:
// bit: 31 32 30 - 15 14-0
// free block prev size
//
// bit 31: free bit, indicating if block is allocated or not
// bit 30: blocked bit, indicating if block is part of a larger block (0) - used for error resilience
// bit 30-15: block index of previous block
// bit 14- 0: size of current block
//
// This management can handle a max amount of 2^15 = 32768 blocks, which resolves to 32MB at blocksize of 1024 bytes
//
#define __BLOCK_GET_SIZE(x) ((x & 0x7FFF))
#define __BLOCK_GET_PREV(x) ((x >> 15) & 0x7FFF)
#define __BLOCK_GET_FREE(x) ((x >> 31))
#define __BLOCK_GET_BLOCK(x) ((x >> 30) & 0x1)
#define __BLOCK_SET_SIZE(x,y) x=((x & ~0x7FFF) | ((y) & 0x7FFF))
#define __BLOCK_ADD_SIZE(x,y) x=((x & ~0x7FFF) | (((x & 0x7FFF)+((y) & 0x7FFF)) & 0x7FFF))
#define __BLOCK_SET_PREV(x,y) x=((x & ~0x3FFF8000) | (((y) & 0x7FFF)<<15))
#define __BLOCK_SET_FREE(x,y) x=((x & 0x7FFFFFFF) | (((y) & 0x1)<<31))
#define __BLOCK_SET_BLOCK(x,y) x=((x & 0xBFFFFFFF) | (((y) & 0x1)<<30))
#define __BLOCK_MAKE(s,p,f,n) (((f & 0x1)<<31) | ((n & 0x1)<<30) | (((p) & 0x7FFF)<<15) | ((s) & 0x7FFF))
#define __BLOCK_GET_FREEBLOCK(x) ((x>>30) & 0x3) // returns 11b if block is a starting block and free, 10b if block is a starting block and allocated, 0xb if it is a non-starting block (don't change)
#define __BLOCK0 ((__MEM_BLOCKS) | (1<<31) | (1<<30))
static long __mem_blocks[__MEM_BLOCKS] = { 0 };
static long __largest_update = 0;
static long __largest_block = __MEM_BLOCKS;
static long __mem_free = __MEM_BLOCKS;
inline void* pgeVramRelativePointer(void *ptr)
{
return (void*)((unsigned long)ptr & ~__MEM_START);
}
inline void* pgeVramAbsolutePointer(void *ptr)
{
return (void*)((unsigned long)ptr | __MEM_START);
}
static void __find_largest_block()
{
long i = 0;
__largest_block = 0;
while (i < __MEM_BLOCKS)
{
long csize = __BLOCK_GET_SIZE(__mem_blocks[i]);
if (__BLOCK_GET_FREEBLOCK(__mem_blocks[i]) == 3 && csize > __largest_block)
__largest_block = csize;
i += csize;
}
__largest_update = 0;
}
void* pgeVramAlloc(unsigned long size)
{
// Initialize memory block, if not yet done
if (__mem_blocks[0]==0) __mem_blocks[0] = __BLOCK0;
long i = 0;
long j = 0;
long bsize = __BLOCKS(size);
if (__largest_update == 0 && __largest_block < bsize)
{
return(0);
}
// Find smallest block that still fits the requested size
long bestblock = -1;
long bestblock_prev = 0;
long bestblock_size = __MEM_BLOCKS + 1;
while (i < __MEM_BLOCKS)
{
long csize = __BLOCK_GET_SIZE(__mem_blocks[i]);
if (__BLOCK_GET_FREEBLOCK(__mem_blocks[i]) == 3 && csize >= bsize)
{
if (csize < bestblock_size)
{
bestblock = i;
bestblock_prev = j;
bestblock_size = csize;
}
if (csize == bsize)
break;
}
j = i;
i += csize;
}
if (bestblock < 0)
{
return(0);
}
i = bestblock;
j = bestblock_prev;
long csize = bestblock_size;
__mem_blocks[i] = __BLOCK_MAKE(bsize, j, 0, 1);
long next = i + bsize;
if (csize > bsize && next < __MEM_BLOCKS)
{
__mem_blocks[next] = __BLOCK_MAKE(csize-bsize, i, 1, 1);
long nextnext = i + csize;
if (nextnext < __MEM_BLOCKS)
{
__BLOCK_SET_PREV(__mem_blocks[nextnext], next);
}
}
__mem_free -= bsize;
if (__largest_block == csize) // if we just allocated from one of the largest blocks
{
if ((csize-bsize) > (__mem_free>>1))
__largest_block = (csize - bsize); // there can't be another largest block
else
__largest_update = 1;
}
return ((void*)(__MEM_START + (i * __BLOCK_SIZE)));
}
void pgeVramFree(void* ptr)
{
if (ptr == 0) return;
long block = ((long)ptr - __MEM_START)/__BLOCK_SIZE;
if (block < 0 || block > __MEM_BLOCKS)
{
return;
}
long csize = __BLOCK_GET_SIZE(__mem_blocks[block]);
if (__BLOCK_GET_FREEBLOCK(__mem_blocks[block]) != 1 || csize == 0)
{
return;
}
// Mark block as free
__BLOCK_SET_FREE(__mem_blocks[block], 1);
__mem_free += csize;
long next = block+csize;
// Merge with previous block if possible
long prev = __BLOCK_GET_PREV(__mem_blocks[block]);
if (prev < block)
{
if (__BLOCK_GET_FREEBLOCK(__mem_blocks[prev]) == 3)
{
__BLOCK_ADD_SIZE(__mem_blocks[prev], csize);
__BLOCK_SET_BLOCK(__mem_blocks[block], 0); // mark current block as inter block
if (next < __MEM_BLOCKS)
__BLOCK_SET_PREV(__mem_blocks[next], prev);
block = prev;
}
}
// Merge with next block if possible
if (next < __MEM_BLOCKS)
{
if (__BLOCK_GET_FREEBLOCK(__mem_blocks[next]) == 3)
{
__BLOCK_ADD_SIZE(__mem_blocks[block], __BLOCK_GET_SIZE(__mem_blocks[next]));
__BLOCK_SET_BLOCK(__mem_blocks[next], 0); // mark next block as inter block
long nextnext = next + __BLOCK_GET_SIZE(__mem_blocks[next]);
if (nextnext < __MEM_BLOCKS)
__BLOCK_SET_PREV(__mem_blocks[nextnext], block);
}
}
// Update if a new largest block emerged
if (__largest_block < __BLOCK_GET_SIZE(__mem_blocks[block]))
{
__largest_block = __BLOCK_GET_SIZE(__mem_blocks[block]);
__largest_update = 0; // No update necessary any more, because update only necessary when largest has shrinked at most
}
}
unsigned long pgeVramAvailable()
{
return __mem_free * __BLOCK_SIZE;
}
unsigned long pgeVramLargestBlock()
{
if (__largest_update) __find_largest_block();
return __largest_block * __BLOCK_SIZE;
}