Create an annotation
folder as such:
data-test
│
│───images
│ │ xxx.jpg
│ └─── yyy.jpg
│
└───annotations
│─── task1.json
└─── task1
│ xxx.json
└─── yyy.json
The task1.json
file contains global task settings (task type, task category, image folder, etc) and its correspoding task1
folder contains an annotation file for each image.
For each task you must add a corresponding task json file with the following structure:
// task1.json
{
"name": "task1",
"spec": {
"plugin_name": "rectangle", // or "polygon", "segmentation", "keypoints", "cuboid", "segmentation-interactive", "smart-rectangle", etc
"label_schema": {
"category": [
{
"name": "car",
"color": "green",
"properties": [ // optional additional properties for given category (its color, its brand, its subtype, etc), see note below
{
"name": "isBlue",
"type": "checkbox",
"default": false
}
]
},
{
"name": "person",
"color": "#eca0a0",
"properties": [
{
"name": "size",
"type": "dropdown",
"enum": [
"little",
"big"
],
"default": "little"
}
]
}
],
"default": "person"
}
},
"dataset": {
"path": "images/", // relative path of the image folder
"data_type": "image" // type of the data: "image" or "pcl" or "sequence_image" or "sequence_pcl"
}
}
Note: for each possible object category, you can list additionnal properties
which are either:
checkbox
(boolean value) : default value istrue
orfalse
(make sure not to add quotation marks)dropdown
type (list of choices) : default value if one of the choices. We advise you to select default category and properties as the most frequent ones.
Note 2: When using sequence
data type, make sure to prefix the plugin name by sequence-
(eg. sequence-polygon
), except for specific plugins which only work with sequences (eg. tracking
).
Note 3: Unless specified otherwise, all 2d object coordinates are normalized by the image dimension. The object lines drawn in-between pixels, 0 corresponds to the left (or top) of the pixel 0, and 1 corresponds to the right (or bottom) of the right-most (or bottom-most) pixel.
Example of annotation specification file for bounding box annotation.
// task1.json
{
"name": "task1",
"spec": {
"plugin_name": "rectangle",
"label_schema": {
"category": [
{
"name": "car",
"color": "green",
"properties": [
{
"name": "isOccluded",
"type": "checkbox",
"default": false
}
]
},
{
"name": "person",
"color": "#eca0a0",
"properties": [
{
"name": "age",
"type": "dropdown",
"enum": [
"child",
"adult",
"elderly"
],
"default": "adult"
}
]
}
],
"default": "person"
}
},
"dataset": {
"path": "images/",
"data_type": "image"
}
}
Example of annotation file for bounding box annotation:
// xxx.json
{
"task_name": "task1",
"annotations": [
{
"id": "m83ihfsoplq",
"geometry": {
"vertices": [
0.4001610305958132, // left
0.23466666666666666, // top
0.5048309178743962, // right
0.6906666666666667 // bottom
],
"type": "rectangle"
},
"category": "person",
"options": {
"size": "child"
}
}
],
"data": {
"type": "image",
"children": "",
"path": "images/xxx.jpg"
}
}
Example of annotation specification file for polygon annotation.
// task1.json
{
"name": "task2",
"spec": {
"plugin_name": "polygon",
"label_schema": {
"category": [
{
"name": "car",
"color": "green",
"properties": [
{
"name": "isOccluded",
"type": "checkbox",
"default": false
}
]
},
{
"name": "person",
"color": "#eca0a0",
"properties": [
{
"name": "age",
"type": "dropdown",
"enum": [
"child",
"adult",
"elderly"
],
"default": "adult"
}
]
}
],
"default": "person"
}
},
"dataset": {
"path": "images/",
"data_type": "image"
}
}
Example of annotation file for polygon annotation:
// xxx.json
{
"task_name": "task2",
"annotations": [
{
"id": "m83ihfsoplq",
"geometry": {
"vertices": [
0.4001610305958132, // pt1 x
0.23466666666666666, // pt1 y
0.5048309178743962, // pt2 x
0.6906666666666667, // pt2 y
0.3048309178743962, // pt3 x
0.8906666666666667 // pt3 y
],
"type": "polygon"
},
"category": "person",
"options": {
"size": "child"
}
},
{
"id": "pmgfqzs2i9k0",
"geometry": {
"mvertices": [
[0.5587761674718197,0.296,0.49033816425120774,0.696,0.6900161030595813,0.7973333333333333,0.715780998389694,0.36533333333333334],
[0.2898550724637681,0.3253333333333333,0.20933977455716588,0.6186666666666667,0.3325281803542673,0.8586666666666667,0.42673107890499196,0.4053333333333333]
]
"vertices":[],
"type":"multi_polygon"
},
"category": "person",
"options": {
"size": "child"
}
}
],
"data": {
"type": "image",
"children": "",
"path": "images/xxx.jpg"
}
}
Note: notice that occluded objects can be formatted as multiple associated polygons : "mvertices".
Example of annotation specification file for keypoints annotation.
// task1.json
{
"name": "task3",
"spec": {
"plugin_name": "keypoints",
"label_schema": {
"category": [
{
"name": "person",
"color": "#eca0a0",
"properties": [
{
"name": "age",
"type": "dropdown",
"enum": [
"child",
"adult",
"elderly"
],
"default": "adult"
}
]
}
],
"default": "person"
}
},
"dataset": {
"path": "images/",
"data_type": "image"
}
}
Example of annotation file for skeleton annotation:
// xxx.json
{
"task_name": "task3",
"annotations": [
{
"id":"4nuyc8i1gbs",
"geometry":{
"vertices":[0.7093750000000001,0.40416666666666673,0.5890625,0.17708333333333337,0.696875,0.2], // example of skeleton made of 3 points (x,y,x,y,x,y)
"edges":[[0,1],[0,2]], // edges to be drawn between the keypoints
"visibles":[true,true,true], // whether each keypoint is visible or not
"type":"graph"
},
"category":"person",
"options":{
"size": "adult"
}
}
],
"data": {
"type": "image",
"children": "",
"path": "images/xxx.jpg"
}
}
Example of annotation specification file for panoptic segmentation annotation.
// task1.json
{
"name": "task4",
"spec": {
"plugin_name": "segmentation",
"label_schema": {
"category": [
{
"name": "car",
"color": "green",
"idx": 1,
"instance": true
},
{
"name": "road",
"color": "blue",
"idx": 2,
"instance": false
}
],
"default": "car"
}
},
"dataset": {
"path": "images/",
"data_type": "image"
}
}
Note that for each category you must specify if it is a semantic
or instance
category. Also note that the optional additional properties are not supported for the segmentation plugin.
Example of annotation file for segmentation annotation:
// xxx.json
{
"task_name": "task4",
"annotations": [
{
"id": 0,
"mask": "...ASUVORK5CYII="
}
],
"data": {
"type": "image",
"children": "",
"path": "images/xxx.jpg"
}
}
The segmentation mask is base64 encoded and can be read and written using the following code:
import json
import base64
import cv2
import numpy as np
def readb64(uri):
encoded_data = uri.split(',')[1]
nparr = np.fromstring(base64.b64decode(encoded_data), np.uint8)
img = cv2.imdecode(nparr, cv2.IMREAD_UNCHANGED)
return img
def writeb64(img):
retval, buffer = cv2.imencode('.png', img)
pic_str = base64.b64encode(buffer)
pic_str = pic_str.decode()
return pic_str
# assuming you stored the mask in a json file of the following structure
# { annotations: [{mask: "..."}]}
with open(filename, 'r') as f:
annotations = json.load(f)["annotations"]
for ann in annotations:
mask = readb64(ann["mask"])
print(mask.shape)
# should be (height,width,3)
# corresponding to [id1, id2, classIdx]
# id1 and id2 are zeros in case of semantic segmentation
# in case of instance segmentation, they should be incremental: (id1:1, id2:0), then (id1:2, id2:0), then (id1:3, id2:0), etc...
Example of annotation specification file for bounding box tracking annotation.
// task1.json
{
"name": "task5",
"spec": {
"plugin_name": "tracking",
"label_schema": {
"category": [
{
"name": "car",
"color": "green",
"properties": [
{
"name": "isOccluded",
"type": "checkbox",
"default": false
}
]
},
{
"name": "person",
"color": "#eca0a0",
"properties": [
{
"name": "age",
"type": "dropdown",
"enum": [
"child",
"adult",
"elderly"
],
"default": "adult"
}
]
}
],
"default": "person"
}
},
"dataset": {
"path": "images/",
"data_type": "image"
}
}
Example of annotation file for bounding box tracking annotation:
// xxx.json
{
"task_name": "task5",
"annotations": {
"0": {
"id": "0",
"keyShapes": {
"0": {
"geometry": {
"vertices": [
0.24798711755233493,
0.3413333333333333,
0.4500805152979066,
0.7093333333333334
],
"type": "rectangle"
},
"timestamp": 0,
"labels": {}
},
"2": {
"geometry": {
"vertices": [
0.24798711755233493,
0.26458333333333334,
0.8203125,
0.7093333333333334
],
"type": "rectangle"
},
"timestamp": 2,
"labels": {},
"id": "0",
"color": "#ff1100"
}
},
"category": "car",
"labels": {}
}
},
"data": {
"type": "sequence_image",
"children": [
{
"timestamp": 0,
"path": "images/vid1/000.png"
},
{
"timestamp": 1,
"path": "images/vid1/001.png"
},
{
"timestamp": 2,
"path": "images/vid1/002.jpg"
}
],
"path": "images/vid1/"
}
}
Example of annotation specification file for cuboid annotation.
// task1.json
{
"name": "task6",
"spec": {
"plugin_name": "cuboid",
"label_schema": {
"category": [
{
"name": "car",
"color": "green",
"properties": [
{
"name": "isOccluded",
"type": "checkbox",
"default": false
}
]
},
{
"name": "person",
"color": "#eca0a0",
"properties": [
{
"name": "age",
"type": "dropdown",
"enum": [
"child",
"adult",
"elderly"
],
"default": "adult"
}
]
}
],
"default": "person"
}
},
"dataset": {
"path": "pcls/",
"data_type": "pcl"
}
}
Example of annotation file for bounding box annotation:
// xxx.json
{
"task_name": "task6",
"annotations": [
{
"position": [
0.4802595234459003, // x
-0.06460804884089505, // y
-0.45750510778452735 // z
],
"size": [
3.0867916079091895, // length
1.29858273838599, // width
0.9156043512339238 // height
],
"heading": 0.03437769738776719,
"id": "0.7u894bwwk49",
"category": "car",
"options": {
"brand": "fiat"
}
}
],
"data": {
"type": "pcl",
"children": "",
"path": "pcls/xxx.bin"
}
}