- Python 3.12 or higher is installed on your machine.
- Running
deploy/docker-compose.yml
without the webapp service - that way you will be covered with all the dependencies, like databases and other services.
Now we need to install the dependencies:
cd src/gprofiler
pip install -e ../gprofiler-dev[postgres]
pip install -e .
To run the backend, you need to set the following environment variables:
BUCKET_NAME
- S3 bucket nameQUERY_API_BASE_URL
- runningsrc/gprofiler_flamedb_rest
http://localhost:8080SQS_INDEXER_QUEUE_URL
- SQS queue nameGPROFILER_POSTGRES_DB_NAME
GPROFILER_POSTGRES_PORT
GPROFILER_POSTGRES_HOST
GPROFILER_POSTGRES_USERNAME
GPROFILER_POSTGRES_PASSWORD
APP_LOG_FILE_PATH
- path to the application log fileAPP_LOG_LEVEL
AWS_METADATA_SERVICE_NUM_ATTEMPTS
- number of attempts to get the AWS credentialsREDIRECT_DOMAIN
- domain name for the installation instruction generation in UISQS_ENDPOINT_URL
- SQS endpoint URL, by defaulthttps://sqs.${AWS_REGION}.amazonaws.com
AWS_ACCESS_KEY_ID
- AWS credentials, if empty is taken from the metadata serviceAWS_SECRET_ACCESS_KEY
AWS_SESSION_TOKEN
Now you can run the backend:
python3 -m uvicorn backend.main:app --reload --port 8000
cd src/gprofiler/frontend
yarn install
yarn start