-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_1D.m
225 lines (193 loc) · 8.42 KB
/
test_1D.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Test script for 1D smooth simulation
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
clear all; clc; clf;
addpath(genpath(pwd)); warning off
%% Set up underlying hyperparameters
nsample = 500;
nd = 1000; % number of dims
sqrt_rho_true = 6; rho_true = sqrt_rho_true^2; % marginal variance
delta_true = 50; % length scale (stdev of GP kernel)
b_true = -8; % mean (DC term)
log_nsevar_true = 3; % log of noise variance
nsevar_true = exp(log_nsevar_true);
l_true = 50; % length scale for smoothness
hyper_true = [rho_true; delta_true; log_nsevar_true; l_true]; % underlying hyperparameter set
% bounds for hypers
mindelta = 1; maxdelta = min(nd); minl = 2; maxl = min(nd);
lb = [0.001;mindelta;-50;minl]; ub = [1e5;maxdelta;10;maxl]; % bounds for [rho, delta, log_nsevar len]
%% Generate u from GP kernel
% Generate diagonal of Fourier-defined SE covariance
cond = 1e12^(1/numel(nd)); % condthresh for small eigenvalues
[logkdiag, wvec_true, Bfft_true] = mkcov_logASDfactored_nD(rho_true,delta_true,nd,max([mindelta,delta_true*0.8]),nd(:),cond);
kdiag = exp(logkdiag);
ndcirc_true = length(logkdiag);
iiDC = find(wvec_true==0);
DCmult = sqrt(prod(nd)); % factor to multiply by dc term
% Generate u from the kernel covariance
v = randn(ndcirc_true,1); % sample v from Normal distribution
bvec = sparse(ndcirc_true,1);
bvec(iiDC) = b_true*DCmult;
ufreq = v.*sqrt(kdiag)+bvec; % get ufreq from v by ufreq=sqrt(kdiag).*v+bp
u_true = fft2real(ufreq, Bfft_true); % transform u from freq to real
% Get c from nonlinear transform of u
opt.nonlinearity = 'rec'; % set the nonlinearity to be log(1+exp(x))
c_true = nonlinear_u(u_true,opt); % get c
% Hard threshold small c_true to be 0 to achieve strict sparsity
iikeep = abs(c_true)>5e-3;
c_true(~iikeep) = 0;
% Plot u and c
subplot(231), plot(u_true), title('u\_true'), drawnow
subplot(232), plot(c_true), title('c\_true'), drawnow
%% gen smooth kernel
cond = 1e12^(1/numel(nd));
[logfdiag, ~, Bfft_f_true] = mkcov_logASDfactored_nD(1,l_true,nd,max([minl,l_true*0.8]),nd(:),cond);
fdiag = exp(logfdiag);
cf_true = fdiag;
d_f = length(cf_true);
% Kf = fft2real(fft2real(diag(fdiag), Bfft_f_true)',Bfft_f_true);
subplot(233), plot(cf_true), title('cf\_true'), axis tight, drawnow
%% Generate data samples
x_true = randn(prod(nd),nsample)'; % generate x from Normal distribution
noise = randn(nsample,1)*0.2; % generate noise from Normal distribution
w_true_f = randn(prod(d_f),1).*sqrt(cf_true);
w_true = fft2real(w_true_f,Bfft_f_true).*sqrt(c_true);
y_true = x_true*w_true+noise*sqrt(nsevar_true);
truth.w_true = w_true;
truth.c_true = c_true;
truth.u_true = u_true;
% Plot w and data
subplot(223), plot(w_true), title('w\_true'), drawnow
subplot(224), plot(y_true, x_true*w_true, 'o');
xlabel('y\_true'), xlabel('x\_true*w\_true'), drawnow
title('y vs x*w'), drawnow
%%
% Split data into training set and test set
ind = randperm(length(y_true));
c = cvpartition(ind,'HoldOut',0.2);
ytrain = y_true(c.training,:);
Xtrain = x_true(c.training,:);
ytest = y_true(c.test,:);
Xtest = x_true(c.test,:);
% Collect data into datastruct
datastruct.x = Xtrain;
datastruct.y = ytrain;
datastruct.xtest = Xtest;
datastruct.ytest = ytest;
datastruct.xx = Xtrain*Xtrain';
datastruct.xy = Xtrain'*ytrain;
datastruct.yy = ytrain'*ytrain;
datastruct.nd = nd;
datastruct.ny = size(Xtrain,1);
% Construct measurement for evaluation
mse_tr = @(a) 1-sum((datastruct.y-a).^2)/sum((datastruct.y-mean(datastruct.y)).^2); % train r2
mse_te = @(a) 1-sum((datastruct.ytest-a).^2)/sum((datastruct.ytest-mean(datastruct.ytest)).^2); % test r2
mse_w = @(a) 1-sum((w_true-a).^2)/sum((w_true-mean(w_true)).^2); % w r2
%% RIDGE
tic;
[kridge,hprs] = autoRidgeRegress_graddual(datastruct);
toc;
figure(1),subplot(521),cla,
plot(1:length(kridge),w_true,'b')
hold on, plot(1:length(kridge),kridge,'r','linewidth',1.5),hold off
title(sprintf('ridge: wR2=%.2f, trainR2=%.2f, testR2=%.2f, nonzero=%.2f%%', ...
mse_w(kridge),mse_tr(Xtrain*kridge),mse_te(Xtest*kridge),100*sum(abs(kridge)>1e-4)/prod(nd)));
drawnow
%% LASSO
tic;
[klasso,lambda_lasso] = runLASSO(Xtrain, ytrain);
toc;
figure(1),subplot(522),cla,
plot(1:length(klasso),w_true,'b')
hold on, plot(1:length(klasso),klasso,'r','linewidth',1.5),hold off
title(sprintf('lasso: wR2=%.2f, trainR2=%.2f, testR2=%.2f, nonzero=%.2f%%', ...
mse_w(klasso),mse_tr(Xtrain*klasso),mse_te(Xtest*klasso),100*sum(abs(klasso)>1e-4)/prod(nd)));
drawnow
%% ARD
% fixed point ARD
kard_fp = runARDfull_prior(1e4,Xtrain,ytrain,0,'gamma');
figure(1),subplot(523),cla,
plot(1:length(kard_fp),w_true,'b')
hold on, plot(1:length(kard_fp),kard_fp,'r','linewidth',1.5),hold off
title(sprintf('fix point ard: wR2=%.2f, trainR2=%.2f, testR2=%.2f, nonzero=%.2f%%', ...
mse_w(kard_fp),mse_tr(Xtrain*kard_fp),mse_te(Xtest*kard_fp),100*sum(abs(kard_fp)>1e-4)/prod(nd)));
drawnow
% SBL ARD
[kard_sbl,dmu,k,gamma3,nsevar3] = sparse_learning_lambda(Xtrain,ytrain,1e3,1e3,0,0,1,1);
figure(1),subplot(524),cla,
plot(1:length(kard_sbl),w_true,'b')
hold on, plot(1:length(kard_sbl),kard_sbl,'r','linewidth',1.5),hold off
title(sprintf('SBL ard: wR2=%.2f, trainR2=%.2f, testR2=%.2f, nonzero=%.2f%%', ...
mse_w(kard_sbl),mse_tr(Xtrain*kard_sbl),mse_te(Xtest*kard_sbl),100*sum(abs(kard_sbl)>1e-4)/prod(nd)));
drawnow
%% DRD
figure(2)
[kdrd, cdrd, hypers_estimation_drd, w_dif_drd, sq_er_drd] = runDRD([],datastruct,lb,ub,200,0,truth);
figure(1),subplot(525),cla,
plot(1:length(kdrd),w_true,'b')
hold on, plot(1:length(kdrd),kdrd,'r','linewidth',1.5),hold off
title(sprintf('drd: wR2=%.2f, trainR2=%.2f, testR2=%.2f, nonzero=%.2f%%', ...
mse_w(kdrd),mse_tr(Xtrain*kdrd),mse_te(Xtest*kdrd),100*sum(abs(kdrd)>1e-4)/prod(nd)));
drawnow
%% DRD convex
figure(2)
[kdrd_convex, cdrd_convex, hypers_estimation_drd_convex, w_dif_convex, sq_er_convex] = runDRD_convex([],datastruct,lb,ub,200,0,truth);
figure(1),subplot(526),cla,
plot(1:length(kdrd_convex),w_true,'b')
hold on, plot(1:length(kdrd_convex),kdrd_convex,'r','linewidth',1.5),hold off
title(sprintf('drd convex: wR2=%.2f, trainR2=%.2f, testR2=%.2f, nonzero=%.2f%%', ...
mse_w(kdrd_convex),mse_tr(Xtrain*kdrd_convex),mse_te(Xtest*kdrd_convex),100*sum(abs(kdrd_convex)>1e-4)/prod(nd)));
drawnow
%% DRD asd
cdrd_half = sqrt(abs(cdrd));
Xtrainf = bsxfun(@times,Xtrain,cdrd_half');
Xtestf = bsxfun(@times,Xtest,cdrd_half');
tic;
[kasd,ASDstats,dd] = fastASD(Xtrainf,ytrain,nd,minl);
toc;
kasd = kasd.*cdrd_half;
figure(1),subplot(527),cla,
plot(1:length(kasd),w_true,'b')
hold on, plot(1:length(kasd),kasd,'r','linewidth',1.5),hold off
title(sprintf('drd asd: wR2=%.2f, trainR2=%.2f, testR2=%.2f, nonzero=%.2f%%', ...
mse_w(kasd),mse_tr(Xtrain*kasd),mse_te(Xtest*kasd),100*sum(abs(kasd)>1e-4)/prod(nd)));
drawnow
%% sDRD
figure(2)
hh = sum(abs(hypers_estimation_drd),2); ii = find(hh~=0); ii = ii(end);
prs0 = [mean(hypers_estimation_drd(max([2,ii-10]):ii,:),1) 10];
[ksdrd, csdrd, hypers_estimation_sdrd, w_dif_sdrd, sq_er_sdrd] = runsDRD(prs0,datastruct,lb,ub,200,0,truth);
figure(1),subplot(528),cla,
plot(1:length(ksdrd),w_true,'b')
hold on, plot(1:length(ksdrd),ksdrd,'r','linewidth',1.5),hold off
title(sprintf('sdrd: wR2=%.2f, trainR2=%.2f, testR2=%.2f, nonzero=%.2f%%', ...
mse_w(ksdrd),mse_tr(Xtrain*ksdrd),mse_te(Xtest*ksdrd),100*sum(abs(ksdrd)>1e-4)/prod(nd)));
drawnow
%% DRD mcmc
figure(2)
[wdrd_mcmc, udrd_mcmc, hypers_estimation_drd_mcmc, w_dif_mcmc, sq_er_mcmc] = runDRD_mcmc([],datastruct,lb,ub,2000,0,truth);
st = 1;
kdrd_mcmc = mean(wdrd_mcmc(st:end,:),1)';
cdrd_mcmc = mean(nonlinear_u(udrd_mcmc(st:end,:),opt,inf),1)';
figure(1),subplot(5,2,9),cla,
plot(1:length(kdrd_mcmc),w_true,'b')
hold on, plot(1:length(kdrd_mcmc),kdrd_mcmc,'r','linewidth',1.5),hold off
title(sprintf('drd mcmc: wR2=%.2f, trainR2=%.2f, testR2=%.2f, nonzero=%.2f%%', ...
mse_w(kdrd_mcmc),mse_tr(Xtrain*kdrd_mcmc),mse_te(Xtest*kdrd_mcmc),100*sum(abs(kdrd_mcmc)>1e-4)/prod(nd)));
drawnow
%% sDRD mcmc
figure(2)
[wsdrd_mcmc, usdrd_mcmc, hypers_estimation_sdrd_mcmc, w_dif_sdrd_mcmc, sq_er_sdrd_mcmc] = runsDRD_mcmc([],datastruct,lb,ub,2000,0,truth);
st = 1;
ksdrd_mcmc = mean(wsdrd_mcmc(st:end,:),1)';
csdrd_mcmc = mean(nonlinear_u(usdrd_mcmc(st:end,:),opt,inf),1)';
figure(1),subplot(5,2,10),cla,
plot(1:length(ksdrd_mcmc),w_true,'b')
hold on, plot(1:length(ksdrd_mcmc),ksdrd_mcmc,'r','linewidth',1.5),hold off
title(sprintf('sdrd mcmc: wR2=%.2f, trainR2=%.2f, testR2=%.2f, nonzero=%.2f%%', ...
mse_w(ksdrd_mcmc),mse_tr(Xtrain*ksdrd_mcmc),mse_te(Xtest*ksdrd_mcmc),100*sum(abs(ksdrd_mcmc)>1e-4)/prod(nd)));
drawnow
%% plot all weights
plot_allw