-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathsimpleaudio.pas.bak.1bit
966 lines (752 loc) · 30.6 KB
/
simpleaudio.pas.bak.1bit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
unit simpleaudio;
//------------------------------------------------------------------------------
// A simple audio unit for Ultibo modelled after SDL audio API
// v.0.91 beta - 20170218
// gpl 2.0 or higher
//------------------------------------------------------------------------------
//
// beta changelog
//
// 0.91 - fixed the bug which caused 1-channel sound play badly distorted
//
//------------------------------------------------------------------------------
{$mode objfpc}{$H+}
interface
uses Classes, SysUtils, Platform, HeapManager, Threads, GlobalConst, math;
type
// ---- I decided to use SDL-like API so this fragment is copied from SDL unit
// ----- and modified somewhat
TAudioSpecCallback = procedure(userdata: Pointer; stream: PUInt8; len:Integer );
PAudioSpec = ^TAudioSpec;
TAudioSpec = record
freq: Integer; // DSP frequency -- samples per second
format: UInt16; // Audio data format
channels: UInt8; // Number of channels: 1 mono, 2 stereo
silence: UInt8; // Audio buffer silence value (calculated)
samples: UInt16; // Audio buffer size in samples
padding: UInt16; // Necessary for some compile environments
size: UInt32; // Audio buffer size in bytes (calculated)
// This function is called when the audio device needs more data.
// 'stream' is a pointer to the audio data buffer
// 'len' is the length of that buffer in bytes.
// Once the callback returns, the buffer will no longer be valid.
// Stereo samples are stored in a LRLRLR ordering.
callback: TAudioSpecCallback;
userdata: Pointer;
// 3 fields added, not in SDL
oversample: UInt8; // oversampling value
range: UInt16; // PWM range
oversampled_size: integer; // oversampled buffer size
end;
const
// ---------- Error codes
freq_too_low= -$11;
freq_too_high= -$12;
format_not_supported= -$21;
invalid_channel_number= -$41;
size_too_low = -$81;
size_too_high= -$81;
callback_not_specified= -$101;
// ---------- Audio formats. Subset of SDL formats
// ---------- These are 99.99% of wave file formats:
AUDIO_U8 = $0008; // Unsigned 8-bit samples
AUDIO_S16 = $8010; // Signed 16-bit samples
AUDIO_F32 = $8120; // Float 32 bit
// SDL based functions
function OpenAudio(desired, obtained: PAudioSpec): Integer;
procedure CloseAudio;
procedure PauseAudio(p:integer);
// Functions not in SDL API
function ChangeAudioParams(desired, obtained: PAudioSpec): Integer;
procedure SetVolume(vol:single);
procedure SetVolume(vol:integer);
procedure setDBVolume(vol:single);
// Simplified functions
function SA_OpenAudio(freq,bits,channels,samples:integer; callback: TAudioSpecCallback):integer;
function SA_ChangeParams(freq,bits,channels,samples:integer): Integer;
function SA_GetCurrentFreq:integer;
function SA_GetCurrentRange:integer;
var t2222,t1111:int64;
n:array[0..65535] of integer;
//------------------ End of Interface ------------------------------------------
implementation
uses retromalina;
type
PLongBuffer=^TLongBuffer;
TLongBuffer=array[0..655350] of integer; // 64K DMA buffer
TCtrlBlock=array[0..7] of cardinal;
PCtrlBlock=^TCtrlBlock;
TAudioThread= class(TThread)
private
protected
procedure Execute; override;
public
Constructor Create(CreateSuspended : boolean);
end;
const nocache=$C0000000; // constant to disable GPU L2 Cache
pll_freq=500000000; // base PLL freq=500 MHz
pwm_base_freq=1920000;
divider=2;
base_freq=pll_freq div divider;
max_pwm_freq=pwm_base_freq div divider;
dma_buffer_size=65536; // max size for simplified channel
// TODO: make the sample buffer size dynamic (?)
sample_buffer_size=2048; // max size for sample buffer.
// The max allowed by dma_buffer_size is 1536 for 44100/16/2 wave
sample_buffer_32_size=16384; // 8x sample_buffer_size for 8-bit mono samples
// ------- Hardware registers addresses --------------------------------------
_pwm_fif1_ph= $7E20C018; // PWM FIFO input reg physical address
_pwm_ctl= $3F20C000; // PWM Control Register MMU address
_pwm_dmac= $3F20C008; // PWM DMA Configuration MMU address
_pwm_rng1= $3F20C010; // PWM Range channel #1 MMU address
_pwm_rng2= $3F20C020; // PWM Range channel #2 MMU address
_gpfsel4= $3F200010; // GPIO Function Select 4 MMU address
_pwmclk= $3F1010a0; // PWM Clock ctrl reg MMU address
_pwmclk_div= $3F1010a4; // PWM clock divisor MMU address
_dma_enable= $3F007ff0; // DMA enable register
_dma_cs= $3F007000; // DMA control and status
_dma_conblk= $3F007004; // DMA ctrl block address
_dma_nextcb= $3F00701C; // DMA next control block
// ------- Hardware initialization constants
transfer_info=$00050140; // DMA transfer information
// 5 - DMA peripheral code (5 -> PWM)
// 1 - src address increment after read
// 4 - DREQ controls write
and_mask_40_45= %11111111111111000111111111111000; // AND mask for gpio 40 and 45
or_mask_40_45_4= %00000000000000100000000000000100; // OR mask for set Alt Function #0 @ GPIO 40 and 45
clk_plld= $5a000016; // set clock to PLL D
clk_div= $5a000000 + divider shl 12; //002000; // set clock divisor to 2.0
pwm_ctl_val= $0000a1e1; // value for PWM init:
// bit 15: chn#2 set M/S mode=1. Use PWM mode for non-noiseshaped audio and M/S mode for oversampled noiseshaped audio
// bit 13: enable fifo for chn #2
// bit 8: enable chn #2
// bit 7: chn #1 M/S mode on
// bit 6: clear FIFO
// bit 5: enable fifo for chn #1
// bit 0: enable chn #1
pwm_dmac_val= $80000707; // PWM DMA ctrl value:
// bit 31: enable DMA
// bits 15..8: PANIC value
// bits 7..0: DREQ value
dma_chn= 14; // use DMA channel 14 (the last)
var gpfsel4:cardinal absolute _gpfsel4; // GPIO Function Select 4
pwmclk:cardinal absolute _pwmclk; // PWM Clock ctrl
pwmclk_div: cardinal absolute _pwmclk_div; // PWM Clock divisor
pwm_ctl:cardinal absolute _pwm_ctl; // PWM Control Register
pwm_dmac:cardinal absolute _pwm_dmac; // PWM DMA Configuration MMU address
pwm_rng1:cardinal absolute _pwm_rng1; // PWM Range channel #1 MMU address
pwm_rng2:cardinal absolute _pwm_rng2; // PWM Range channel #2 MMU address
dma_enable:cardinal absolute _dma_enable; // DMA Enable register
dma_cs:cardinal absolute _dma_cs+($100*dma_chn); // DMA ctrl/status
dma_conblk:cardinal absolute _dma_conblk+($100*dma_chn); // DMA ctrl block addr
dma_nextcb:cardinal absolute _dma_nextcb+($100*dma_chn); // DMA next ctrl block addr
dmactrl_ptr:PCardinal=nil; // DMA ctrl block pointer
dmactrl_adr:cardinal absolute dmactrl_ptr; // DMA ctrl block address
dmabuf1_ptr:PCardinal=nil; // DMA data buffer #1 pointer
dmabuf1_adr:cardinal absolute dmabuf1_ptr; // DMA data buffer #1 address
dmabuf2_ptr:PCardinal=nil; // DMA data buffer #2 pointer
dmabuf2_adr:cardinal absolute dmabuf2_ptr; // DMA data buffer #2 address
ctrl1_ptr,ctrl2_ptr:PCtrlBlock; // DMA ctrl block array pointers
ctrl1_adr:cardinal absolute ctrl1_ptr; // DMA ctrl block #1 array address
ctrl2_adr:cardinal absolute ctrl2_ptr; // DMA ctrl block #2 array address
// CurrentAudioSpec:TAudioSpec;
SampleBuffer_ptr:pointer;
SampleBuffer_ptr_b:PByte absolute SampleBuffer_ptr;
SampleBuffer_ptr_si:PSmallint absolute SampleBuffer_ptr;
SampleBuffer_ptr_f:PSingle absolute SampleBuffer_ptr;
SampleBuffer_adr:cardinal absolute SampleBuffer_ptr;
SampleBuffer_32_ptr:PCardinal;
SampleBuffer_32_adr:cardinal absolute SampleBuffer_32_ptr;
AudioThread:TAudioThread;
AudioOn:integer=0; // 1 - audio worker thread is running
volume:integer=4096; // audio volume; 4096 -> 0 dB
pauseA:integer=1; // 1 - audio is paused
nc:cardinal;
working:integer;
CurrentAudioSpec:TAudioSpec;
s_desired, s_obtained: TAudioSpec;
procedure InitAudioEx(range,t_length:integer); forward;
function noiseshaper8(bufaddr,outbuf,oversample,len:integer):integer; forward;
function noiseshaper1(bufaddr,outbuf,oversample,len:integer):integer; forward;
// ------------------------------------------------
// A helper procedure which removes RAM RO limit
// used here to speed up the noise shaper
//-------------------------------------------------
procedure removeramlimits(addr:integer);
var Entry:TPageTableEntry;
begin
Entry:=PageTableGetEntry(addr);
Entry.Flags:=$3b2; //executable, shareable, rw, cacheable, writeback
PageTableSetEntry(Entry);
end;
//------------------------------------------------------------------------------
// Procedure initaudio - init the GPIO, PWM and DMA for audio subsystem.
//------------------------------------------------------------------------------
procedure InitAudioEx(range,t_length:integer); //TODO don't init second time!!!
var i:integer;
begin
for i:=0 to 65535 do n[i]:=random($10000);
dmactrl_ptr:=GetAlignedMem(64,32); // get 64 bytes for 2 DMA ctrl blocks
ctrl1_ptr:=PCtrlBlock(dmactrl_ptr); // set pointers so the ctrl blocks can be accessed as array
ctrl2_ptr:=PCtrlBlock(dmactrl_ptr+8); // second ctrl block is 8 longs further
dmabuf1_ptr:=getmem(655360); // allocate 64k for DMA buffer
dmabuf2_ptr:=getmem(655360); // .. and the second one
ctrl1_ptr^[0]:=transfer_info; // transfer info
ctrl1_ptr^[1]:=nocache+dmabuf1_adr; // source address -> buffer #1
ctrl1_ptr^[2]:=_pwm_fif1_ph; // destination address
ctrl1_ptr^[3]:=t_length; // 8*2016; // t_length; // transfer length
ctrl1_ptr^[4]:=$0; // 2D length, unused
ctrl1_ptr^[5]:=nocache+ctrl2_adr; // next ctrl block -> ctrl block #2
ctrl1_ptr^[6]:=$0; // unused
ctrl1_ptr^[7]:=$0; // unused
ctrl2_ptr^:=ctrl1_ptr^; // copy first block to second
ctrl2_ptr^[5]:=nocache+ctrl1_adr; // next ctrl block -> ctrl block #1
ctrl2_ptr^[1]:=nocache+dmabuf2_adr; // source address -> buffer #2
CleanDataCacheRange(dmactrl_adr,64); // now push this into RAM
sleep(1);
// Init the hardware
gpfsel4:=(gpfsel4 and and_mask_40_45) or or_mask_40_45_4; // gpio 40/45 as alt#0 -> PWM Out
pwmclk:=clk_plld; // set PWM clock src=PLLD (500 MHz)
pwmclk_div:=clk_div; // set PWM clock divisor=2 (250 MHz)
pwm_rng1:=range; // minimum range for 8-bit noise shaper to avoid overflows
pwm_rng2:=range; //
pwm_ctl:=pwm_ctl_val; // pwm contr0l - enable pwm, clear fifo, use fifo
pwm_dmac:=pwm_dmac_val; // pwm dma enable
dma_enable:=dma_enable or (1 shl dma_chn); // enable dma channel # dma_chn
dma_conblk:=nocache+ctrl1_adr; // init DMA ctr block to ctrl block # 1
dma_cs:=$00FF0003; // start DMA
{
gpfsel4:=(gpfsel4 and and_mask_40_45) or or_mask_40_45_4; // gpio 40/45 as alt#0 -> PWM Out
pwmclk:=clk_plld; // set PWM clock src=PLLD (500 MHz)
pwmclk_div:=$5a000000+$040000;// clk_div; // set PWM clock divisor=2 (250 MHz)
pwm_rng1:=32;//range; // minimum range for 8-bit noise shaper to avoid overflows
pwm_rng2:=32;//range; //
pwm_ctl:=$00002363; // pwm contr0l - enable pwm, clear fifo, use fifo
pwm_dmac:=pwm_dmac_val; // pwm dma enable
dma_enable:=dma_enable or (1 shl dma_chn); // enable dma channel # dma_chn
dma_conblk:=nocache+ctrl1_adr; // init DMA ctr block to ctrl block # 1
dma_cs:=$00FF0003; // start DMA
}
end;
function SA_OpenAudio(freq,bits,channels,samples:integer; callback: TAudioSpecCallback):integer;
begin
s_desired.freq:=freq;
s_desired.samples:=samples;
s_desired.channels:=channels;
s_desired.samples:=samples;
s_desired.callback:=callback;
case bits of
8:s_desired.format:= AUDIO_U8;
16:s_desired.format:=AUDIO_S16;
32:s_desired.format:=AUDIO_F32;
else
begin
result:=format_not_supported;
exit;
end;
end;
result:=OpenAudio(@s_desired,@s_obtained);
end;
function SA_ChangeParams(freq,bits,channels,samples:integer): Integer;
begin
s_desired.freq:=freq;
s_desired.samples:=samples;
s_desired.channels:=channels;
s_desired.samples:=samples;
s_desired.callback:=nil;
case bits of
0:s_desired.format:=0;
8:s_desired.format:= AUDIO_U8;
16:s_desired.format:=AUDIO_S16;
32:s_desired.format:=AUDIO_F32;
else
begin
result:=format_not_supported;
exit;
end;
end;
result:=ChangeAudioParams(@s_desired,@s_obtained);
end;
// ----------------------------------------------------------------------
// OpenAudio
// Inits the audio according to specifications in 'desired' record
// The values which in reality had been set are in 'obtained' record
// Returns 0 or the error code, in this case 'obtained' is invalid
//
// You have to set the fields:
//
// freq: samples per second, 8..960 kHz
// format: audio data format
// channels: number of channels: 1 mono, 2 stereo
// samples: audio buffer size in samples. >32, not too long (<384 for stereo 44100 Hz)
// callback: a callback function you have to write in your program
//
// The rest of fields in 'desire' will be ignored. They will be filled in 'obtained'
// ------------------------------------------------------------------------
function OpenAudio(desired, obtained: PAudioSpec): Integer;
var maxsize:double;
over_freq:integer;
begin
result:=0;
// ----------- check if params can be used
// ----------- the frequency should be between 8 and 960 kHz
if desired^.freq<8000 then
begin
result:=freq_too_low;
exit;
end;
if desired^.freq>max_pwm_freq then
begin
result:=freq_too_high;
exit;
end;
//----------- check if the format is supported
if (desired^.format <> AUDIO_U8) and (desired^.format <> AUDIO_S16) and (desired^.format <> AUDIO_F32) then
begin
result:=format_not_supported;
exit;
end;
//----------- check the channel number
if (desired^.channels < 1) or (desired^.channels>2) then
begin
result:=invalid_channel_number;
exit;
end;
//----------- check the buffer size in samples
//----------- combined with the noise shaper should not exceed 64k
// It is ~384 for 44 kHz S16 samples
if (desired^.samples<32) then
begin
result:=size_too_low;
exit;
end;
maxsize:=65528/max_pwm_freq*desired^.freq/desired^.channels;
if (desired^.samples>maxsize) then
begin
result:=size_too_high;
exit;
end;
if (desired^.callback=nil) then
begin
result:=callback_not_specified;
exit;
end;
// now compute the obtained parameters
obtained^:=desired^;
obtained^.oversample:=max_pwm_freq div desired^.freq;
// the workaround for simply making 432 Hz tuned sound
// the problem is: when going 44100->43298
// the computed oversample changes from 21 to 22
// and this causes the resulting DMA buffer exceed 64K
// Also if I init the 43298 Hz soud, I will want to change it to 44100
// without changing anything else
if obtained^.oversample=22 then obtained^.oversample:=21;
over_freq:=desired^.freq*obtained^.oversample;
obtained^.range:=round(base_freq/over_freq);
obtained^.freq:=round(base_freq/(obtained^.range*obtained^.oversample));
if (desired^.format = AUDIO_U8) then obtained^.silence:=128 else obtained^.silence:=0;
obtained^.padding:=0;
obtained^.size:=obtained^.samples*obtained^.channels;
if obtained^.size>sample_buffer_size then
begin
result:=size_too_high;
exit;
end;
if obtained^.channels=2 then obtained^.oversampled_size:=obtained^.size*4*obtained^.oversample
else obtained^.oversampled_size:=obtained^.size*8*obtained^.oversample; //output is always 2 channels
if obtained^.format=AUDIO_U8 then obtained^.size:=obtained^.size;
if obtained^.format=AUDIO_S16 then obtained^.size:=obtained^.size*2;
if obtained^.format=AUDIO_F32 then obtained^.size:=obtained^.size*4;
InitAudioEx(obtained^.range,obtained^.oversampled_size);
CurrentAudioSpec:=obtained^;
samplebuffer_ptr:=getmem(sample_buffer_size);
samplebuffer_32_ptr:=getmem(sample_buffer_32_size);
removeramlimits(integer(@noiseshaper1)); // noise shaper uses local vars or it will be slower
removeramlimits(integer(@noiseshaper8)); // noise shaper uses local vars or it will be slower
// now create and start the audio thread
pauseA:=1;
AudioThread:=TAudioThread.Create(true);
AudioThread.start;
end;
// ---------- ChangeAudioParams -----------------------------------------
//
// This function will try to change audio parameters
// without closing and reopening the audio system (=loud click)
// The usage is the same as OpenAudio
//
// -----------------------------------------------------------------------
function ChangeAudioParams(desired, obtained: PAudioSpec): Integer;
var maxsize:double;
over_freq:integer;
begin
// -------------- Do all things as in OpenAudio
// -------------- TODO: what is common, should go to one place
result:=0;
if desired^.freq=0 then desired^.freq:=CurrentAudioSpec.freq;
if desired^.freq<8000 then
begin
result:=freq_too_low;
exit;
end;
if desired^.freq>max_pwm_freq then
begin
result:=freq_too_high;
exit;
end;
if desired^.format=0 then desired^.format:=CurrentAudioSpec.format;
if (desired^.format <> AUDIO_U8) and (desired^.format <> AUDIO_S16) and (desired^.format <> AUDIO_F32) then
begin
result:=format_not_supported;
exit;
end;
if desired^.channels=0 then desired^.channels:=CurrentAudioSpec.channels;
if (desired^.channels < 1) or (desired^.channels>2) then
begin
result:=invalid_channel_number;
exit;
end;
if desired^.samples=0 then desired^.samples:=CurrentAudioSpec.samples ;
if (desired^.samples<32) then
begin
result:=size_too_low;
exit;
end;
maxsize:=65528/max_pwm_freq*desired^.freq/desired^.channels;
if (desired^.samples>maxsize) then
begin
result:=size_too_high;
exit;
end;
if (desired^.callback=nil) then desired^.callback:=CurrentAudioSpec.callback;
obtained^:=desired^;
obtained^.oversample:=max_pwm_freq div desired^.freq;
// the workaround for simply making 432 Hz tuned sound
// the problem is: when going 44100->43298
// the computed oversample changes from 21 to 22
// and this causes the resulting DMA buffer exceed 64K
if obtained^.oversample=22 then obtained^.oversample:=21;
over_freq:=desired^.freq*obtained^.oversample;
obtained^.range:=round(base_freq/over_freq);
obtained^.freq:=round(base_freq/(obtained^.range*obtained^.oversample));
if (desired^.format = AUDIO_U8) then obtained^.silence:=128 else obtained^.silence:=0;
obtained^.padding:=0;
obtained^.size:=obtained^.samples*obtained^.channels;
if obtained^.size>sample_buffer_size then
begin
result:=size_too_high;
exit;
end;
if obtained^.channels=2 then obtained^.oversampled_size:=obtained^.size*4*obtained^.oversample
else obtained^.oversampled_size:=obtained^.size*8*obtained^.oversample; //output is always 2 channels
if obtained^.format=AUDIO_S16 then obtained^.size:=obtained^.size * 2;
if obtained^.format=AUDIO_F32 then obtained^.size:=obtained^.size * 4;
// Here the common part ends.
//
// Now we cannot "InitAudio" as it is already init and running
// Instead we will change - only when needed:
//
// - PWM range
// - DMA transfer length
if obtained^.range<>CurrentAudioSpec.range then
begin
pwm_ctl:=0; // stop PWM
pwm_rng1:=obtained^.range; // set a new range
pwm_rng2:=obtained^.range;
pwm_ctl:=pwm_ctl_val; // start PWM
end;
if obtained^.oversampled_size<>CurrentAudioSpec.oversampled_size then
begin
repeat sleep(0) until dma_nextcb=nocache+ctrl2_adr;
ctrl1_ptr^[3]:=obtained^.oversampled_size;
repeat sleep(0) until dma_nextcb=nocache+ctrl1_adr;
ctrl2_ptr^[3]:=obtained^.oversampled_size;
end;
repeat until working=1;
repeat until working=0;
CurrentAudioSpec:=obtained^;
end;
procedure CloseAudio;
begin
// Stop audio worker thread
//PauseAudio(1);
AudioThread.terminate;
repeat sleep(1) until AudioOn=1;
// ...then switch off DMA...
ctrl1_ptr^[5]:=0;
ctrl2_ptr^[5]:=0;
// up to 8 ms of audio can still reside in the buffer
sleep(20);
// Now disable PWM...
pwm_ctl:=0;
//... and return the memory to the system
dispose(dmabuf1_ptr);
dispose(dmabuf2_ptr);
freemem(dmactrl_ptr);
freemem(samplebuffer_ptr);
end;
procedure pauseaudio(p:integer);
begin
if p=1 then pauseA:=1;
if p=0 then pausea:=0;
end;
procedure SetVolume(vol:single);
// Setting the volume as float in range 0..1
begin
if (vol>=0) and (vol<=1) then volume:=round(vol*4096);
end;
procedure SetVolume(vol:integer);
// Setting the volume as integer in range 0..4096
begin
if (vol>=0) and (vol<=4096) then volume:=vol;
end;
procedure setDBVolume(vol:single);
// Setting decibel volume. This has to be negative number in range ~-72..0)
begin
if (vol<0) and (vol>=-72) then volume:=round(4096*power(10,vol/20));
if vol<-72 then volume:=0;
if vol>=0 then volume:=4096;
end;
function noiseshaper1(bufaddr,outbuf,oversample,len:integer):integer;
label p101,p102,p103,p999,i1l,i1r,i2l,i2r,i3l,i3r,inputl,inputr,outputl,outputr;
var i,j,q:cardinal;
p:pbyte;
pp:PCardinal;
nn:pointer;
// -- rev 20170126
begin
p:= pbyte(outbuf);
pp:= pCardinal(outbuf);
oversample*=8;
nn:=@n ;
t2222:=gettime;
asm
push {r0-r10,r12,r14}
ldr r3,i1l // init integerators
ldr r4,i1r
ldr r7,i2l
ldr r8,i2r
ldr r5,bufaddr // init buffers addresses
ldr r2,outbuf
ldr r14,oversample // yes, lr used here, I am short of regs :(
ldr r0,len // outer loop counter
mov r10,#32 // bit counter
mov r9,#0
str r9,[r2],#4
str r9,[r2],#-4
p102: mov r1,r14 // inner loop counter
ldr r6,[r5],#4 // new input value left
sub r6,#0x8000000
//lsl r6,#2
str r6,inputl
ldr r12,[r5],#4 // new input value right
sub r12,#0x8000000
//lsl r12,#2
str r12,inputr
p101:
ldr r3,i1l
ldr r7,i2l
ldr r9,i3l
ldr r6,inputl
qadd r3,r3,r6 // inner loop: do oversampling
qadd r7,r7,r3
qadd r9,r9,r7
cmp r7,#0x0000000
ldr r8,[r2]
lsl r8,#1
addge r8,#1
str r8,[r2],#4
movge r8,#0x8000000
movlt r8,#-0x8000000
sub r3,r8
sub r7,r7,r8
// sub r9,r8
str r3,i1l
str r7,i2l
str r9,i3l
ldr r3,i1r
ldr r7,i2r
ldr r9,i3r
ldr r6,inputr
qadd r3,r3,r12 // inner loop: do oversampling
qadd r7,r7,r3
qadd r9,r9,r7
cmp r7,#0x00000
ldr r8,[r2]
lsl r8,#1
addge r8,#1
str r8,[r2],#-4
movge r8,#0x8000000
movlt r8,#-0x8000000
sub r3,r8
sub r7,r7,r8
// sub r9,r8
str r3,i1r
str r7,i2r
str r9,i3r
subs r10,#1
bne p103
mov r10,#32
add r2,#8
mov r9,#0
str r9,[r2],#4
str r9,[r2],#-4
p103: subs r1,#1
bne p101
subs r0,#1
bne p102
str r3,i1l
str r4,i1r
str r7,i2l
str r8,i2r
str r2,result
b p999
i1l: .long 0
i1r: .long 0
i2l: .long 0
i2r: .long 0
i3l: .long 0
i3r: .long 0
inputl: .long 0
inputr: .long 0
outputl: .long 0
outputr: .long 0
p999: pop {r0-r10,r12,r14}
end;
{
for i:=0 to (4*1008)-1 do
begin
q:=0;
for j:=0 to 31 do
begin
if pp[64*i+2*j]>128 then q:=q or ($80000000 shr j);
end;
pp[2*i]:=q;
q:=0;
for j:=0 to 31 do
begin
if pp[64*i+2*j+1]>128 then q:=q or ($80000000 shr j);
end;
pp[2*i+1]:=q;
end;
}
CleanDataCacheRange(outbuf,$10000);
t1111:=gettime-t2222;
end;
function noiseshaper8(bufaddr,outbuf,oversample,len:integer):integer;
label p101,p102,p999,i1l,i1r,i2l,i2r;
// -- rev 20170126
begin
asm
push {r0-r10,r12,r14}
ldr r3,i1l // init integerators
ldr r4,i1r
ldr r7,i2l
ldr r8,i2r
ldr r5,bufaddr // init buffers addresses
ldr r2,outbuf
ldr r14,oversample // yes, lr used here, I am short of regs :(
ldr r0,len // outer loop counter
p102: mov r1,r14 // inner loop counter
ldr r6,[r5],#4 // new input value left
ldr r12,[r5],#4 // new input value right
p101: add r3,r6 // inner loop: do oversampling
add r4,r12
add r7,r3
add r8,r4
mov r9,r7,asr #20
mov r10,r9,lsl #20
sub r3,r10
sub r7,r10
add r9,#1 // kill the negative bug :) :)
str r9,[r2],#4
mov r9,r8,asr #20
mov r10,r9,lsl #20
sub r4,r10
sub r8,r10
add r9,#1
str r9,[r2],#4
subs r1,#1
bne p101
subs r0,#1
bne p102
str r3,i1l
str r4,i1r
str r7,i2l
str r8,i2r
str r2,result
b p999
i1l: .long 0
i1r: .long 0
i2l: .long 0
i2r: .long 0
p999: pop {r0-r10,r12,r14}
end;
CleanDataCacheRange(outbuf,$10000);
end;
// Audio thread
// After the audio is opened it calls audiocallback when needed
constructor TAudioThread.Create(CreateSuspended : boolean);
begin
FreeOnTerminate := True;
inherited Create(CreateSuspended);
end;
procedure TAudioThread.Execute;
var
i:integer;
ns_size:integer;
begin
AudioOn:=1;
ThreadSetCPU(ThreadGetCurrent,CPU_ID_1);
ThreadSetPriority(ThreadGetCurrent,7);
threadsleep(1);
repeat
repeat threadsleep(1) until (dma_cs and 2) <>0 ;
working:=1;
nc:=dma_nextcb;
if pauseA>0 then // clean the buffers
begin
if nc=nocache+ctrl1_adr then for i:=0 to 16383 do dmabuf1_ptr[i]:=CurrentAudioSpec.range div 2;
if nc=nocache+ctrl2_adr then for i:=0 to 16383 do dmabuf2_ptr[i]:=CurrentAudioSpec.range div 2;
if nc=nocache+ctrl1_adr then CleanDataCacheRange(dmabuf1_adr,$10000);
if nc=nocache+ctrl2_adr then CleanDataCacheRange(dmabuf2_adr,$10000);
end
else
begin
// if not pause then we should call audiocallback to fill the buffer
if CurrentAudioSpec.callback<>nil then CurrentAudioSpec.callback(CurrentAudioSpec.userdata, samplebuffer_ptr, CurrentAudioSpec.size);
// the buffer has to be converted to 2 chn 32bit integer
if CurrentAudioSpec.channels=2 then // stereo
begin
case CurrentAudioSpec.format of
AUDIO_U8: for i:=0 to 2*CurrentAudioSpec.samples-1 do samplebuffer_32_ptr[i]:= volume*256*samplebuffer_ptr_b[i];
AUDIO_S16: for i:=0 to 2*CurrentAudioSpec.samples-1 do samplebuffer_32_ptr[i]:= volume*samplebuffer_ptr_si[i]+$8000000;
AUDIO_F32: for i:=0 to 2*CurrentAudioSpec.samples-1 do samplebuffer_32_ptr[i]:= round(volume*32768*samplebuffer_ptr_f[i])+$8000000;
end;
end
else
begin
case CurrentAudioSpec.format of
AUDIO_U8: for i:=0 to CurrentAudioSpec.samples-1 do begin samplebuffer_32_ptr[2*i]:= volume*256*samplebuffer_ptr_b[i]; samplebuffer_32_ptr[2*i+1]:= samplebuffer_32_ptr[2*i]; end;
AUDIO_S16: for i:=0 to CurrentAudioSpec.samples-1 do begin samplebuffer_32_ptr[2*i]:= volume*samplebuffer_ptr_si[i]+$8000000; samplebuffer_32_ptr[2*i+1]:= samplebuffer_32_ptr[2*i]; end;
AUDIO_F32: for i:=0 to CurrentAudioSpec.samples-1 do begin samplebuffer_32_ptr[2*i]:= round(volume*32768*samplebuffer_ptr_f[i])+$8000000; samplebuffer_32_ptr[2*i+1]:= samplebuffer_32_ptr[2*i]; end;
end;
end;
if nc=nocache+ctrl1_adr then noiseshaper8(samplebuffer_32_adr,dmabuf1_adr,CurrentAudioSpec.oversample,CurrentAudioSpec.samples)
else noiseshaper8(samplebuffer_32_adr,dmabuf2_adr,CurrentAudioSpec.oversample,CurrentAudioSpec.samples);
if nc=nocache+ctrl1_adr then CleanDataCacheRange(dmabuf1_adr,$10000) else CleanDataCacheRange(dmabuf2_adr,$10000);
end;
dma_cs:=$00FF0003;
working:=0;
until terminated;
AudioOn:=0;
end;
function SA_GetCurrentFreq:integer;
begin
result:=CurrentAudioSpec.freq;
end;
function SA_GetCurrentRange:integer;
begin
result:=CurrentAudioSpec.range;
end;
end.