This repository has been archived by the owner on Oct 1, 2020. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathclass_search_web_scrapping.py
436 lines (378 loc) · 18.3 KB
/
class_search_web_scrapping.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
from bs4 import BeautifulSoup
import urllib2
import re
import requests
import time
def CleanUpString(string):
"""Cleans up a string by getting rid of '\\t', '\\r', '\\n', and double spaces (i.e. ' ').
Input: string
Returns: String
"""
return string.replace('\t', '').replace('\r', '').replace('\n', '').replace(' ', '')
def GetCurrentSemester():
return "201610"
def GetTextBookInfo(url):
"""
Gets ISBN and Textbook info from Notre Dame bookstore
"""
try:
response = requests.get(url, timeout = 8.0)
soup = BeautifulSoup(response.content, "lxml")
isbn_info = [i.text for i in soup.find_all('span', attrs = {'id': 'materialISBN'})]
isbns = [str(isbn.split("ISBN: ")[1]) for isbn in isbn_info]
author_info = [i.text for i in soup.find_all('span', attrs = {'id':'materialAuthor'})]
authors = [str(author.split("Author: ")[1]) for author in author_info]
Titles_info = [str(i.text) for i in soup.find_all("h3", attrs = {'class':'material-group-title'})]
choice_of_titles_index = -1
for i in xrange(len(Titles_info)):
Titles_info[i] = Titles_info[i].replace("Edition", " Edition")
if "Choice of Titles" in Titles_info[i]:
choice_of_titles_index = i
if choice_of_titles_index != -1:
Titles_info.pop(choice_of_titles_index)
Textbooks = []
for i in xrange(len(authors)):
new_textbook = {}
new_textbook['author'] = CleanUpString(authors[i])
new_textbook['isbn'] = CleanUpString(isbns[i])
new_textbook['title'] = CleanUpString(Titles_info[i])
Textbooks.append(new_textbook)
required_books = soup.find_all("li", attrs = {"id":"material-group_REQUIRED"})
if len(required_books):
textbook_info = required_books[0].find_all("div", attrs = {"class":"material-group-table"})
else:
textbook_info = []
Headers = ["Type", "Buy/Rent", "Option", "Rental Period", "Provider"]
Required_Textbook_Info = []
for textbook in textbook_info:
new_textbook = []
textbook_options = textbook.find_all("tr", attrs = {"class": "print_background"})
for i in xrange(len(textbook_options)):
new_option = {}
info = textbook_options[i].find_all("td", attrs = {'class':None})
for j in xrange(len(info)):
new_option[Headers[j]] = info[j].text
price = textbook_options[i].find_all("td", attrs = {'class': 'align_right right_border'})
new_option["Price"] = price[0].text
new_textbook.append(new_option)
Required_Textbook_Info.append(new_textbook)
Recommended_books = soup.find_all("li", attrs = {"id":"material-group_RECOMMENDED"})
if len(Recommended_books):
textbook_info = Recommended_books[0].find_all("div", attrs = {"class":"material-group-table"})
else:
textbook_info = []
Recommended_Textbook_Info = []
for textbook in textbook_info:
new_textbook = []
textbook_options = textbook.find_all("tr", attrs = {"class": "print_background"})
for i in xrange(len(textbook_options)):
new_option = {}
info = textbook_options[i].find_all("td", attrs = {'class':None})
for j in xrange(len(info)):
new_option[Headers[j]] = info[j].text
price = textbook_options[i].find_all("td", attrs = {'class': 'align_right right_border'})
new_option["Price"] = price[0].text
new_textbook.append(new_option)
Recommended_Textbook_Info.append(new_textbook)
return Textbooks, Required_Textbook_Info, Recommended_Textbook_Info
except requests.exceptions.Timeout:
return [], [], []
def GetOptions():
"""
Gets the options for the 6 categories (Term, Division, Campus, Subject, Attribute, and Credits)
Gets both the option that is displayed on class-search.nd.edu as well as the option_key
that is neccessary to submit the post request in order to navigate to the correct page
Returns: dictionary of option_descriptions (what is displayed on class-search.nd.edu)
that point to option_keys{option_description: option_key}
"""
url = 'https://class-search.nd.edu/reg/srch/ClassSearchServlet'
response = requests.get(url)
soup = BeautifulSoup(response.content, "lxml")
data = soup.find_all('select')
# Dictionaries used to store both option description and the form
# data value required for post requests
TermOptions = {}
DivisionOptions = {}
CampusOptions = {}
SubjectOptions = {}
AttributeOptions = {}
CreditsOptions = {}
OptionCategories = [TermOptions, DivisionOptions, CampusOptions,
SubjectOptions, AttributeOptions, CreditsOptions]
for i, category in zip(data, OptionCategories):
options = i.find_all('option')
for option in options:
# check if option is selected. If so, then use 4th item in list
option_split = str(option).split('"')
if 'selected' in option_split[0]:
category[CleanUpString(str(option.text))] = str(option).split('"')[3]
else:
category[CleanUpString(str(option.text))] = str(option).split('"')[1]
# Get rid of all Year entries for TermOptions
New_Term_Options = OptionCategories[0].copy()
for entry in New_Term_Options:
if 'Year' in entry:
del OptionCategories[0][entry]
for key in OptionCategories[3]:
if "/" in key:
OptionCategories[3][key.replace("/", " and ")] = OptionCategories[3][key]
del OptionCategories[3][key]
return OptionCategories
def GetClasses(term, subj, credit, Attr, divs, campus):
"""
Given the inputs, function will find the class data from class-search.nd.edu.
Inputs: Academic term, Academic subject, number of credits, Attribute type,
Academic division, and finally campus.
All should be in the form of strings
Returns: A list of dictionaries, with each dictionary being a specific class at Notre Dame
Each dictionary has the same keys and gives the same information for each class
"""
url = 'https://class-search.nd.edu/reg/srch/ClassSearchServlet'
# stores data for the post request
FormData = {'TERM': term, 'SUBJ': subj, 'CREDIT':credit, 'ATTR':Attr,
'DIVS':divs, 'CAMPUS' : campus}
response = requests.post(url, data=FormData)
soup = BeautifulSoup(response.content, "lxml")
ClassTable = soup.find_all('table', {'id':'resulttable'})
# If no classes listed on class search, return an empty []
if len(ClassTable) == 0:
return []
else:
ClassTable = ClassTable[0].find_all('tr')
Headers = ClassTable[0].find_all('th')
# Class_Headers stores the column headers for the class data
Class_Headers = []
for header in Headers:
Class_Headers.append(str(header.text))
Classes = ClassTable[1:]
Classlist = []
# Temporary counting variable
Num_Classes = 0
URLS = []
for Class in Classes:
Classlist.append({})
Info = Class.find_all('td')
URLS.append([])
for i, header in zip(Info, Class_Headers):
url = ''
url = i.find_all('a')
if url:
URLS[Num_Classes].append(url)
try:
if header == 'Instructor':
names = i.find_all('a')
professors = []
for name in names:
try:
x = CleanUpString(str(name.text).replace('\t', ''))
if x[-1] == ' ':
x = x[:-1]
professors.append(x)
except:
x = CleanUpString(name.text.replace('\t', ''))
if x[-1] == ' ':
x = x[:-1]
professors.append(x)
Classlist[Num_Classes][header] = professors
else:
Classlist[Num_Classes][header] = CleanUpString(str(i.text).replace('\t', ''))
except UnicodeEncodeError:
Classlist[Num_Classes][header] = CleanUpString(i.text.replace('\t', ''))
Classlist[Num_Classes]['Campus'] = campus
Classlist[Num_Classes]['Term'] = term
Classlist[Num_Classes]['Attribute'] = Attr
Num_Classes += 1
# Reassign temporary counting variable
Num_Classes = 0
for url in URLS:
ClassUrlData = url[0]
ClassDescriptionUrl = ClassUrlData[0].get('href')
BookStoreUrlData = ClassUrlData[1]
BookStoreUrl = BookStoreUrlData.get('href')
ClassUrlExtension = CleanUpString(ClassDescriptionUrl.split("'")[1])
baseUrl = 'https://class-search.nd.edu/reg/srch/'
Classlist[Num_Classes]['Course_Info'] = baseUrl + ClassUrlExtension
Classlist[Num_Classes]['View_Books'] = BookStoreUrl
# Some classes have no teacher yet announced.
# If they do not have a teacher, then len(url) == 1.
# If the teacher is announced, len(url) == 2
if len(url) == 2:
url_data = []
for i in range(len(url[1])):
InstructorUrlData = url[1][i].get('href')
TeacherUrlExtension = CleanUpString(InstructorUrlData.split("'")[1])
url_data.append(TeacherUrlExtension)
baseUrl = 'https://class-search.nd.edu/reg/srch/'
Classlist[Num_Classes]['Teacher_Info'] = [(baseUrl + i) for i in url_data]
else:
Classlist[Num_Classes]['Teacher_Info'] = 'NONE'
Num_Classes += 1
# Clean up Course - sec in Classlist
for i in Classlist:
i["Title"] = i["Title"].replace('/', ' and ')
i["Title"] = i["Title"].replace("?", "")
i['Course - Sec'] = i['Course - Sec'].replace('*View Books', '').replace('View Books', '')
return Classlist
def GetClassDescriptionAndAll(CRN, Term):
"""Gets the class description, the course prerequisites, and the course corequisites
Input: a url of a class specific page
returns: A list with the course description, a string that reveals the contents of the rest of the list,
the prerequisites (if any), and corequisites (if a
String options: 'Both', 'Neither', 'Prerequisote Only', or 'Corequisite Only'
"""
url = 'https://class-search.nd.edu/reg/srch/ClassSearchServlet?CRN=' + str(CRN) + '&TERM=' + str(Term)
response = requests.get(url)
soup = BeautifulSoup(response.content, "lxml")
# Get department, section, and course number for textbook scrapping
Course_Info = soup.find_all("th", attrs = {"class":"ddlabel"})[0]
course_section = CleanUpString(Course_Info.text).replace(u'\xa0','')
Department_Index = 0
while not course_section[Department_Index].isnumeric():
Department_Index += 1
Department = str(course_section[0:Department_Index])
Course_Num_Index = Department_Index
while course_section[Course_Num_Index] != '-':
Course_Num_Index+= 1
Course_Num = str(course_section[Department_Index:Course_Num_Index])
section = str(course_section.split("Section")[1][0:2])
Data = soup.find_all('td')[2].text.split('Restrictions:')
DataText = Data[0]
Restrictions = CleanUpString(Data[1]).replace(u"\xa0", '').split("Course Attributes")[0].split("Cannot")[0].split(".syllabus")[0]
try:
# Catch Department_Index error if class has no attributes
AttributeText = CleanUpString(Data[1].split("Course Attributes:")[1].split(".syllabus")[0])
AttributeText = [str(i) for i in AttributeText.split(u"\xa0")]
except IndexError:
AttributeText = []
Course_Description = DataText.split('Associated Term:')[0]
EnrollmentData = soup.find_all("table", {"class":"datadisplaytable"})
if len(EnrollmentData) == 4:
Registration = EnrollmentData[1].text
CrossListed = EnrollmentData[2].text
elif len(EnrollmentData) == 3:
Registration = EnrollmentData[1].text
CrossListed = None
if 'Prerequisites' in DataText:
if 'Corequisites' in DataText:
Temporary = DataText.split('Prerequisites:')[1].split('Corequisites:')
Prerequisites = CleanUpString(str(Temporary[0].replace(u'\xa0', '')))
Corequisites = CleanUpString(str(Temporary[1].replace(u'\xa0', '')))
return [Course_Description, 'Both', Prerequisites, Corequisites, AttributeText, Restrictions, Registration, CrossListed, Department, Course_Num, section]
else:
Prerequisites = CleanUpString(DataText.split('Prerequisites:')[1].replace(u'\xa0', ''))
return [Course_Description, 'Prerequisite Only', Prerequisites, AttributeText, Restrictions, Registration, CrossListed, Department, Course_Num, section]
elif 'Corequisites' in DataText:
Corequisites = CleanUpString(DataText.split('Corequisites:')[1].replace(u'\xa0', ''))
return [Course_Description, 'Corequisite Only', Corequisites, AttributeText, Restrictions, Registration, CrossListed, Department, Course_Num, section]
else:
return [Course_Description, 'Neither', AttributeText, Restrictions, Registration, CrossListed, Department, Course_Num, section]
def Sort_dict(data, isTerms):
""" Takes the keys in a dictionary, sorts them by their corresponding value, and then puts
the keys in an ordered list. For the Terms, want highest numbers first, so need to reverse the keys list"""
if isTerms:
keys = sorted(data, key=data.get)
keys.reverse()
return keys
else:
return sorted(data)
def GetSubjectsInDepartments():
Colleges = ['College of Arts & Letters', 'College of Engineering', 'College of Science', 'Mendoza College of Business', 'First Year of Studies', 'The Law School', "St. Mary's College", 'Other', 'School of Architecture']
Colleges_with_deparments = []
for i in Colleges:
Colleges_with_deparments.append([])
f = open('./SubjectsInColleges.txt', 'r')
department_Department_Index = 0
for line in f.read().split('\n'):
if line == '-----':
department_Department_Index += 1
else:
if line == '':
continue
else:
Colleges_with_deparments[department_Department_Index].append(line)
sorted_Colleges_with_deparments = []
for college in Colleges_with_deparments:
new_college = [college[0]] + sorted(college[1:])
sorted_Colleges_with_deparments.append(new_college)
f.close()
return sorted_Colleges_with_deparments
def GetAllProfessors():
f = open('./TeacherList.txt', 'r')
Professors = {}
line = f.readline()
while line != '':
name = line.split('>')[-1].replace('\n', '')
# get rid of any trailing spaces
while name[-1] == ' ':
name = name[:-1]
# get last name
last_name = CleanUpString(name.split(',')[0])
# get list of all middle and first names
surname = [CleanUpString(string) for string in name.split(',')[1].split(' ') if string != ' ' and string != '']
surname_combinations = []
for i in range(1, len(surname)+1):
surname_combinations.append(' '.join(surname[0:i]))
name_combinations = [last_name + ', ' + surname_option for surname_option in surname_combinations]
ID = CleanUpString(line.split('"')[1])
for i in name_combinations:
Professors[i] = ID
line = f.readline()
return Professors
def GetAllProfessorDepartments():
f = open('./ProfessorDepartments.txt', 'r')
line = f.readline()
ProfDepartments = {}
while line != '':
ID = CleanUpString(line.split('; Departments:')[0])
Department = CleanUpString(line.split('; Departments:')[1].replace('\n', ''))
if ID in ProfDepartments:
ProfDepartments[ID].append(Department)
else:
ProfDepartments[ID] = [Department]
line = f.readline()
f.close()
return ProfDepartments
def GetCoursesTaught(Prof_ID):
url = 'https://class-search.nd.edu/reg/srch/InstructorClassesServlet?TERM=' + GetCurrentSemester() +'&P=' + str(Prof_ID)
response = requests.get(url)
soup = BeautifulSoup(response.content, "lxml")
rows = soup.find_all('tr')[2:]
CoursesTaught = []
for course in rows:
# gives string that specifies url extension for each course
url_data = str(course.find_all('a')[0]).split("'")[1].split('P=')[0].replace('&', '')
url_data = url_data.split('CRN=')[1].split('TERM=')
CoursesTaught.append(course.text.split('\n')[1:-1] + url_data)
for course in CoursesTaught:
course[2] = course[2].replace('/', ' and ')
course[2] = course[2].replace('?', '')
temp = []
for letter in course[0]:
if letter.isdigit():
break
else:
temp.append(letter)
course.append(''.join(temp))
return CoursesTaught
def Professors_No_Repeats():
f = open('./TeacherList.txt', 'r')
Professors = {}
line = f.readline()
while line != '':
name = line.split('>')[-1].replace('\n', '')
# get rid of any trailing spaces
while name[-1] == ' ':
name = name[:-1]
# get last name
last_name = CleanUpString(name.split(',')[0])
# get list of all middle and first names
surname = [CleanUpString(string) for string in name.split(',')[1].split(' ') if string != ' ' and string != '']
surname_combinations = []
for i in range(1, len(surname)+1):
surname_combinations.append(' '.join(surname[0:i]))
name_combinations = [last_name + ', ' + surname_option for surname_option in surname_combinations]
ID = CleanUpString(line.split('"')[1])
for i in name_combinations:
Professors[ID] = i
line = f.readline()
return sorted(Professors.values())