🏷️chap_notation
The notation used throughout this book is summarized below.
-
$x$ : A scalar -
$\mathbf{x}$ : A vector -
$\mathbf{X}$ : A matrix -
$\mathsf{X}$ : A tensor -
$\mathbf{I}$ : An identity matrix -
$x_i$ ,$[\mathbf{x}]_i$ : The$i^\mathrm{th}$ element of vector$\mathbf{x}$ -
$x_{ij}$ ,$x_{i,j}$ ,$[\mathbf{X}]{ij}$, $[\mathbf{X}]{i,j}$: The element of matrix$\mathbf{X}$ at row$i$ and column$j$
-
$\mathcal{X}$ : A set -
$\mathbb{Z}$ : The set of integers -
$\mathbb{Z}^+$ : The set of positive integers -
$\mathbb{R}$ : The set of real numbers -
$\mathbb{R}^n$ : The set of$n$ -dimensional vectors of real numbers -
$\mathbb{R}^{a\times b}$ : The set of matrices of real numbers with$a$ rows and$b$ columns -
$|\mathcal{X}|$ : Cardinality (number of elements) of set$\mathcal{X}$ -
$\mathcal{A}\cup\mathcal{B}$ : Union of sets$\mathcal{A}$ and$\mathcal{B}$ -
$\mathcal{A}\cap\mathcal{B}$ : Intersection of sets$\mathcal{A}$ and$\mathcal{B}$ -
$\mathcal{A}\setminus\mathcal{B}$ : Subtraction of set$\mathcal{B}$ from set$\mathcal{A}$
-
$f(\cdot)$ : A function -
$\log(\cdot)$ : The natural logarithm -
$\exp(\cdot)$ : The exponential function -
$\mathbf{1}_\mathcal{X}$ : The indicator function -
$\mathbf{(\cdot)}^\top$ : Transpose of a vector or a matrix -
$\mathbf{X}^{-1}$ : Inverse of matrix$\mathbf{X}$ -
$\odot$ : Hadamard (elementwise) product -
$[\cdot, \cdot]$ : Concatenation -
$\lvert \mathcal{X} \rvert$ : Cardinality of set$\mathcal{X}$ -
$|\cdot|_p$ :$L_p$ norm -
$|\cdot|$ :$L_2$ norm -
$\langle \mathbf{x}, \mathbf{y} \rangle$ : Dot product of vectors$\mathbf{x}$ and$\mathbf{y}$ -
$\sum$ : Series addition -
$\prod$ : Series multiplication -
$\stackrel{\mathrm{def}}{=}$ : Definition
-
$\frac{dy}{dx}$ : Derivative of$y$ with respect to$x$ -
$\frac{\partial y}{\partial x}$ : Partial derivative of$y$ with respect to$x$ -
$\nabla_{\mathbf{x}} y$ : Gradient of$y$ with respect to$\mathbf{x}$ -
$\int_a^b f(x) ;dx$ : Definite integral of$f$ from$a$ to$b$ with respect to$x$ -
$\int f(x) ;dx$ : Indefinite integral of$f$ with respect to$x$
-
$P(\cdot)$ : Probability distribution -
$z \sim P$ : Random variable$z$ has probability distribution$P$ -
$P(X \mid Y)$ : Conditional probability of$X \mid Y$ -
$p(x)$ : Probability density function -
${E}_{x} [f(x)]$ : Expectation of$f$ with respect to$x$ -
$X \perp Y$ : Random variables$X$ and$Y$ are independent -
$X \perp Y \mid Z$ : Random variables$X$ and$Y$ are conditionally independent given random variable$Z$ -
$\mathrm{Var}(X)$ : Variance of random variable$X$ -
$\sigma_X$ : Standard deviation of random variable$X$ -
$\mathrm{Cov}(X, Y)$ : Covariance of random variables$X$ and$Y$ -
$\rho(X, Y)$ : Correlation of random variables$X$ and$Y$ -
$H(X)$ : Entropy of random variable$X$ -
$D_{\mathrm{KL}}(P|Q)$ : KL-divergence of distributions$P$ and$Q$
-
$\mathcal{O}$ : Big O notation