Skip to content

Latest commit

 

History

History
86 lines (61 loc) · 3.01 KB

index.md

File metadata and controls

86 lines (61 loc) · 3.01 KB

Notation

🏷️chap_notation

The notation used throughout this book is summarized below.

Numbers

  • $x$: A scalar
  • $\mathbf{x}$: A vector
  • $\mathbf{X}$: A matrix
  • $\mathsf{X}$: A tensor
  • $\mathbf{I}$: An identity matrix
  • $x_i$, $[\mathbf{x}]_i$: The $i^\mathrm{th}$ element of vector $\mathbf{x}$
  • $x_{ij}$, $x_{i,j}$,$[\mathbf{X}]{ij}$, $[\mathbf{X}]{i,j}$: The element of matrix $\mathbf{X}$ at row $i$ and column $j$

Set Theory

  • $\mathcal{X}$: A set
  • $\mathbb{Z}$: The set of integers
  • $\mathbb{Z}^+$: The set of positive integers
  • $\mathbb{R}$: The set of real numbers
  • $\mathbb{R}^n$: The set of $n$-dimensional vectors of real numbers
  • $\mathbb{R}^{a\times b}$: The set of matrices of real numbers with $a$ rows and $b$ columns
  • $|\mathcal{X}|$: Cardinality (number of elements) of set $\mathcal{X}$
  • $\mathcal{A}\cup\mathcal{B}$: Union of sets $\mathcal{A}$ and $\mathcal{B}$
  • $\mathcal{A}\cap\mathcal{B}$: Intersection of sets $\mathcal{A}$ and $\mathcal{B}$
  • $\mathcal{A}\setminus\mathcal{B}$: Subtraction of set $\mathcal{B}$ from set $\mathcal{A}$

Functions and Operators

  • $f(\cdot)$: A function
  • $\log(\cdot)$: The natural logarithm
  • $\exp(\cdot)$: The exponential function
  • $\mathbf{1}_\mathcal{X}$: The indicator function
  • $\mathbf{(\cdot)}^\top$: Transpose of a vector or a matrix
  • $\mathbf{X}^{-1}$: Inverse of matrix $\mathbf{X}$
  • $\odot$: Hadamard (elementwise) product
  • $[\cdot, \cdot]$: Concatenation
  • $\lvert \mathcal{X} \rvert$: Cardinality of set $\mathcal{X}$
  • $|\cdot|_p$: $L_p$ norm
  • $|\cdot|$: $L_2$ norm
  • $\langle \mathbf{x}, \mathbf{y} \rangle$: Dot product of vectors $\mathbf{x}$ and $\mathbf{y}$
  • $\sum$: Series addition
  • $\prod$: Series multiplication
  • $\stackrel{\mathrm{def}}{=}$: Definition

Calculus

  • $\frac{dy}{dx}$: Derivative of $y$ with respect to $x$
  • $\frac{\partial y}{\partial x}$: Partial derivative of $y$ with respect to $x$
  • $\nabla_{\mathbf{x}} y$: Gradient of $y$ with respect to $\mathbf{x}$
  • $\int_a^b f(x) ;dx$: Definite integral of $f$ from $a$ to $b$ with respect to $x$
  • $\int f(x) ;dx$: Indefinite integral of $f$ with respect to $x$

Probability and Information Theory

  • $P(\cdot)$: Probability distribution
  • $z \sim P$: Random variable $z$ has probability distribution $P$
  • $P(X \mid Y)$: Conditional probability of $X \mid Y$
  • $p(x)$: Probability density function
  • ${E}_{x} [f(x)]$: Expectation of $f$ with respect to $x$
  • $X \perp Y$: Random variables $X$ and $Y$ are independent
  • $X \perp Y \mid Z$: Random variables $X$ and $Y$ are conditionally independent given random variable $Z$
  • $\mathrm{Var}(X)$: Variance of random variable $X$
  • $\sigma_X$: Standard deviation of random variable $X$
  • $\mathrm{Cov}(X, Y)$: Covariance of random variables $X$ and $Y$
  • $\rho(X, Y)$: Correlation of random variables $X$ and $Y$
  • $H(X)$: Entropy of random variable $X$
  • $D_{\mathrm{KL}}(P|Q)$: KL-divergence of distributions $P$ and $Q$

Complexity

  • $\mathcal{O}$: Big O notation

Discussions