-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathproj_WeiReactions_JustNfp_MultipleLayers_PermutInv_BestSaved.py
502 lines (357 loc) · 15.3 KB
/
proj_WeiReactions_JustNfp_MultipleLayers_PermutInv_BestSaved.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
# -*- coding: utf-8 -*-
"""
Created on Mon Aug 5 23:03:26 2019
@author: Andrei
"""
from keras.callbacks import ModelCheckpoint
import pandas as pd
import csv
#import processCSV as p
import numpy as np
from imp import reload
import rdkit.Chem.rdChemReactions as cR
from rdkit import Chem
import rdkit.DataStructs.cDataStructs as cS
from sklearn import preprocessing
from sklearn.preprocessing import OneHotEncoder
from sklearn.linear_model import LinearRegression
import sklearn.neural_network as nn
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import cross_validate
from sklearn.model_selection import train_test_split
from sklearn.model_selection import cross_val_score
from sklearn.ensemble import RandomForestRegressor
from sklearn import datasets, linear_model
from sklearn.model_selection import cross_val_score, KFold
#from keras.models import Sequential
from sklearn.metrics import accuracy_score
#from keras.layers import Dense, Conv2D, Flatten,MaxPooling2D
#from keras.layers import Dense
#import keras
#from keras.wrappers.scikit_learn import KerasRegressor
#from keras.layers import Input,Dropout,Embedding
#from keras.models import Model
#from keras.wrappers.scikit_learn import KerasRegressor
import pickle
from rdkit.Chem.Fingerprints import FingerprintMols
from sklearn.preprocessing import StandardScaler,MinMaxScaler
import pydot
from tensorflow.keras.layers import Input, Dropout,Embedding,Dense, Conv2D, Flatten,MaxPooling2D
from tensorflow.keras.layers import Add,Concatenate,Conv1D,Reshape,average,maximum,multiply,BatchNormalization
from tensorflow.keras.models import Model,Sequential
from tensorflow.keras.optimizers import Adam,Adagrad
from tensorflow.keras.initializers import RandomNormal
#from tensorflow.keras.layers.normalization import BatchNormalization
from tensorflow.keras.initializers import glorot_uniform
from tensorflow.keras.utils import plot_model
from keras.regularizers import l1,l2
from tensorflow.keras.callbacks import EarlyStopping, ReduceLROnPlateau
from superkeras import permutational_layer as pl
from matplotlib import pyplot
from scipy.stats import pearsonr
#from tensorflow.keras.models import Sequential
import os
os.environ["PATH"] += os.pathsep + 'C:/Program Files (x86)/Graphviz2.38/bin/'
seed = 1
#reload(p)
suffix="\\"
#file="FinalCleaned.csv"
file="WeiReactionsAndAllFps.pkl"
filename="FinalAllcsv.csv"
#pCSV = p.processCSV(filename)
#readOriginalDataSetAndCreatePickledSmilesOnly
#pCSV.readPickleAndTranslateToMols()
#pCSV = p.processCSV(filename)
#pCSV = p.processCSV(file)
#pCSV.readOriginalDataSetAndCreatePickledSmilesOnly(file)
#df=pickle.load(open("WeiReactionsAndAllFps.pkl",'rb'))
df=pd.read_pickle("./WeiReactionsNeuralFp.pkl")
#df=pd.read_pickle("./WeiReactionsAndAllFps.pkl")
fpSize=767
FpLen=256
FpLen1=256
#pCSV.readPickleAndTranslateToMols(fpSize,1)
maxL=3
#for i in range(len(pCSV.Ws)):
# pCSV.Ws[i]=pCSV.Ws[i]+[0.]*(maxL-len(pCSV.Ws[i]))
##################################### FC newtork ###########################
#X_train, X_test, y_train, y_test = train_test_split(pCSV.df, test_size=0.2, random_state=0)
df_train, df_test = train_test_split(df, test_size=0.8, random_state=0)
#scaler = StandardScaler()
#scaler = MinMaxScaler()
#ff0=df_train['Morgan'].to_numpy()
#ff00=df_test['Morgan'].to_numpy()
ff0=df_train['NeuralFp'].to_numpy()
ff00=df_test['NeuralFp'].to_numpy()
X_train=np.asarray([list(i) for i in ff0])
X_test=np.asarray([list(i) for i in ff00])
#X_train= df_train['Morgan']
#X_test=df_test['Morgan']
#X_train=np.asarray([[j for j in i] for i in df_train['fp']])
#X_train=np.asarray([[j for j in i] for i in df_train['fp']])
#X_test=np.asarray([[j for j in i] for i in df_test['fp']])
#y1_train=np.asarray([[j for j in i] for i in df_train['Ws']])
y_train=np.asarray([i for i in df_train['Target']])
y_test=np.asarray([i for i in df_test['Target']])
#y_train=np.asarray(df_train['Target'])
#y_test=np.asarray(df_test['Target'])
#y_train=np.asarray([float(i) for i in df_train['Loss']])
#y_test=np.asarray([float(i) for i in df_test['Loss']])
#aa=df_train['Ws'].to_numpy()
#aa1=df_test['Ws'].to_numpy()
#ff=df_train['NeuralFp'].to_numpy()
#ff1=df_test['NeuralFp'].to_numpy()
#fp_train=df_train['Mol2Vec']
#fp_test=df_test['Mol2Vec']
#fp_train=np.asarray([list(i) for i in ff])
#fp_test=np.asarray([list(i) for i in ff1])
#ff_1=df_train['Mol2Vec'].to_numpy()
#ff1_1=df_test['Mol2Vec'].to_numpy()
#fp1_train=np.asarray([list(i) for i in ff_1])
#fp1_test=np.asarray([list(i) for i in ff1_1])
#ff1_1=df_test['Mol2Vec'].to_numpy()
#ff=df_train['fpss'].to_numpy()
#ff1=df_test['fpss'].to_numpy()
#fp_train=np.asarray([list(i)+[[0. for i in range(len(i[0]))]]*(maxL-len(i)) for i in ff])
#fp_test=np.asarray([list(i)+[[0. for i in range(len(i[0]))]]*(maxL-len(i)) for i in ff1])
#fp1_train=np.asarray([list(i)+[[0. for i in range(len(i[0]))]]*(maxL-len(i)) for i in ff_1])
#fp1_test=np.asarray([list(i)+[[0. for i in range(len(i[0]))]]*(maxL-len(i)) for i in ff1_1])
#y1_train=np.asarray([list(i)+[0.]*(maxL-len(i)) for i in aa])
#y2_train=np.asarray(df_train['pH'].to_numpy())
#y3_train=np.asarray(df_train['InCnc'].to_numpy())
#trainMask=np.asarray(y1_train!=0).astype(float)
#y1_test=np.asarray([list(i)+[0.]*(maxL-len(i)) for i in aa1])
#y2_test=np.asarray(df_test['pH'].to_numpy())
#y3_test=np.asarray(df_test['InCnc'].to_numpy())
#scaler = StandardScaler()
#scaler1 = scaler.fit(y1_train)
#y1_train = scaler.transform(y1_train)
#y1_test = scaler.transform(y1_test)
#sc = StandardScaler()
#sc = scaler.fit(y2_train)
#y2_train = sc.transform(y2_train)
#y2_test = sc.transform(y2_test)
my_init=glorot_uniform(seed=42)
def MT_model(perm):
#def funx1(i,maxL):
#if i<maxL:
#return Input(shape=(fpSize,),name=f"MRg_{i}")
#elif i<2*maxL-3 and i!=maxL+2:
# elif maxL<=i< 2*maxL:
#return Input(shape=(FpLen,),name=f"Ml_{i}")
#else:
# return Input(shape=(FpLen1,),name=f"Sq_{i}")
def funx1(i,maxL):
if i<maxL:
return Input(shape=(156,),name=f"MoR_{i}")
x2 = [funx1(i,maxL) for i in range(1*maxL)]
# x2_1=Concatenate()([x2[0],x2[1],x2[2]])
xs=[]
xs=[x2[perm[0]],x2[perm[1]],x2[perm[2]]]
#xs=[x2[1],x2[2],x2[0]]
#xs=[x2[1],x2[0],x2[2]]
#xs=[x2[2],x2[0],x2[1]]
#xs=[x2[2],x2[1],x2[0]]
#xs=[x2[2],x2[0],x2[1]]
#xs1=[]
xs2=[]
#xs.append(x2)
#for i in range(maxL):
# xs.append(x2[i])
# xs.append(x2[maxL+i])
# xs.append(x2[2*maxL+i])
#list1=[100,100,100,100]
list1=[100,100,100,100]
#list1=[100,58,58,58]
# list2=[112,112,112,112]
pairwise_model = pl.PairwiseModel(
(156,), pl.repeat_layers(Dense, list1, name="hidden",activation='relu'), name="pairwise_model"
)
perm_encoder = pl.PermutationalEncoder(pairwise_model, maxL, name="permutational_encoder")
perm_layer = pl.PermutationalLayer1(perm_encoder, name="permutational_layer")
outputs = perm_layer.model(xs)
#outputs = average(outputs)
outputs = maximum(outputs)
# print("x2",x2)
output_51 = Dense(100, activation='relu',kernel_initializer=my_init)(outputs)
# output_51 = Dense(200, activation='relu',kernel_initializer=my_init)(output_51)
# output_51 = Dense(200, activation='relu',kernel_initializer=my_init)(output_51)
# output_51 = Dense(200, activation='relu',kernel_initializer=my_init)(output_51)
# output_51 = Dense(200, activation='relu',kernel_initializer=my_init)(output_51)
# output_51 = Dense(200, activation='relu',kernel_initializer=my_init)(output_51)
# #output_51 = Dropout(0.5)(output_51)
# output_51 = Dense(200, activation='relu',kernel_initializer=my_init)(output_51)
#
output_Loss=Dense(17,name='Loss_output',activation='softmax',kernel_initializer=my_init)(output_51)
# output_Loss=Dense(17,name='Loss_output',activation='linear',kernel_initializer=my_init)(output_51)
#output_Loss=Dense(17,name='Loss_output',activation='linear',kernel_initializer=my_init)(output_51)
model=Model(inputs=x2,outputs=output_Loss)
# model.compile(loss={'Loss_output':'categorical_crossentropy'},
# optimizer=Adam(lr=0.00005, beta_1=0.9, beta_2=0.999, epsilon=1e-8), loss_weights = {'Loss_output':1.}
# ,metrics=['accuracy']
# )
model.compile(loss={'Loss_output':'categorical_crossentropy'},
optimizer=Adam(lr=0.002976, beta_1=0.9, beta_2=0.999, epsilon=1e-8), loss_weights = {'Loss_output':1.}
#optimizer=Adam(lr=0.00176, beta_1=0.9, beta_2=0.999, epsilon=1e-8), loss_weights = {'Loss_output':1.}
#optimizer=Adam(lr=0.00005, beta_1=0.9, beta_2=0.999, epsilon=1e-8), loss_weights = {'Loss_output':1.}
,metrics=['accuracy']
)
model.summary()
plot_model(model, 'Config3Mod.png', show_shapes=True)
return model
#model, model1=MT_model()
#model=MT_model()
#model=cnv_model()
#results = cross_val_score(estimator, np.asarray(pCSV.features), pCSV.labels, cv=kfold)
#print("Results: %.2f (%.2f) MSE" % (results.mean(), results.std()))
#model.fit(X_train, y_train, epochs=1220,batch_size=20,validation_data=(X_test, y_test))
#model.fit({'Fp':X_train['fp']},{'Loss_output':X_train['Loss'],'Ws_output':X_train['Ws']}, epochs=1220,batch_size=20,validation_data=(X_test, y_test))
#model.fit({'Fp':X_train},{'Loss_output':y_train,'Ws_output':y1_train}, epochs=1220,batch_size=16,
# validation_data=({'Fp':X_test},{'Loss_output':y_test,'Ws_output':y1_test}))
#model.fit({'Fp':X_train,'WsI':y1_train},{'Loss_output':y_train,'Ws_output':y1_train}, epochs=1220,batch_size=20,
# validation_data=({'Fp':X_test},{'Loss_output':y_test,'Ws_output':y1_test}))
#es = EarlyStopping(monitor='val_loss', mode='min', verbose=1,patience=150)
#reduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.4,
#patience=5, min_lr=0.00001,verbose=1)
#model.fit({'Fp':X_train,'WsI':y1_train},{'Loss_output':y_train}, epochs=1220,batch_size=20,
# validation_data=({'Fp':X_test,'WsI':y1_test},{'Loss_output':y_test}),callbacks=[es])
#
#model.fit([y1_train[:,i] if i<maxL else X_train for i in range(maxL+1)],y_train, epochs=1220,batch_size=20,
# validation_data=([y1_test[:,i] if i<maxL else X_test for i in range(maxL+1)],y_test),callbacks=[es])
#def funx(i,maxL,Test=False):
# if Test:
# if(i<maxL):
# #return (y1_test[:,i],fp_test[:,i])
# return y1_test[:,i]
# elif i==maxL:
# return y2_test
# elif i==maxL+1:
# return y3_test
# elif i==maxL+2:
# return X_test
# else:
# return fp_test[:,i-maxL-3]
#
# else:
#
# if(i<maxL):
# #return (y1_train[:,i],fp_train[:,i])
# return y1_train[:,i]
# elif i==maxL :
# return y2_train
# elif i==maxL+1:
# return y3_train
# elif i==maxL+2 :
# return X_train
# else:
# return fp_train[:,i-maxL-3]
#
#
#
#def funx1(i,maxL,Test=False):
# if Test:
# if(i<maxL):
# #return (y1_test[:,i],fp_test[:,i])
# return y1_test[:,i]
# elif i==maxL:
# return y2_test
# elif i==maxL+1:
# return y3_test
# elif i==maxL+2:
# return X_test
# else:
# return fp_test[:,i-maxL-3]
#
# else:
#
# if(i<maxL):
# #return (y1_train[:,i],fp_train[:,i])
# return y1_train[:,i]
# elif i==maxL :
# return y2_train
# elif i==maxL+1:
# return y3_train
# elif i==maxL+2 :
# return X_train
# else:
# return fp_train[:,i-maxL-3]
def funx(i,maxL,Test=False):
if Test:
if(i<maxL):
return X_test[:,i]
else:
if(i<maxL):
return X_train[:,i]
def accuracy(preds, targs):
isMaxPred = [[val == max(row) for val in row] for row in preds]
isMaxTarg = [[val == max(row) for val in row] for row in targs]
return float(sum([isMaxPred[ii] == isMaxTarg[ii] for ii in range(len(preds))]))/len(preds)
dP=0.1
def accuracy1(preds, targs):
isMaxPred = [[max(row)-dP<= val <= max(row)+dP for val in row] for row in preds]
isMaxTarg = [[val == max(row) for val in row] for row in targs]
return float(sum([isMaxPred[ii] == isMaxTarg[ii] for ii in range(len(preds))]))/len(preds)
#model.fit([funx(i,maxL) for i in range(2*maxL)],y_train, epochs=1220,batch_size=20,
# validation_data=([funx(i,maxL,Test=True) for i in range(2*maxL)],y_test),
# callbacks=[es,reduce_lr])
filepath="weights1.best.hdf5"
#checkpoint = ModelCheckpoint(filepath, monitor='val_loss', verbose=1, save_best_only=True, mode='min')
accTest=[[],[],[],[],[],[]]
accTrain=[[],[],[],[],[],[]]
accTest1=[[],[],[],[],[],[]]
accTrain1=[[],[],[],[],[],[]]
#permutations=[[0,1,2],[0,2,1],[1,0,2],[1,2,0],[2,1,0],[2,0,1]]
permutations=[[0,1,2]]
#for counter, value in enumerate(my_list):
for cnt, pr in enumerate(permutations):
#accTest
for i in range(1):
model=MT_model(pr)
checkpoint = ModelCheckpoint(filepath, monitor='val_loss', verbose=1, save_best_only=True, mode='min')
es = EarlyStopping(monitor='val_loss', mode='min', verbose=1,patience=20)
reduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.4,
patience=10, min_lr=0.00001,verbose=1)
for i in range(1):
# model.fit([funx(i,maxL) for i in range(maxL)],y_train, epochs=1220,batch_size=100,
# validation_data=([funx(i,maxL,Test=True) for i in range(maxL)],y_test),
# callbacks=[es,reduce_lr])
model.fit([funx(i,maxL) for i in range(maxL)],y_train, epochs=100,batch_size=100,
validation_data=([funx(i,maxL,Test=True) for i in range(maxL)],y_test),
callbacks=[es,reduce_lr,checkpoint])
#callbacks=[es,reduce_lr])
#model.load_weights("weights1.best.hdf5")
data1=model.predict([funx(i,maxL,Test=True) for i in range(maxL)])
data2=model.predict([funx(i,maxL,Test=False) for i in range(maxL)])
accTest[cnt].append(accuracy(data1,y_test))
accTrain[cnt].append(accuracy(data2,y_train))
accTest1[cnt].append(accuracy1(data1,y_test))
accTrain1[cnt].append(accuracy1(data2,y_train))
print("########### Permutation,count: ###############",pr,cnt )
print("########### !!!!!!!!!!!!!!!!!!!!!!!!! ###############")
print("########### Train,Test Accuracy: ###############",accTrain[cnt][-1],accTest[cnt][-1])
print("########### Corrected Train,Test Accuracy: ###############",accTrain1[cnt][-1],accTest1[cnt][-1])
print("########### !!!!!!!!!!!!!!!!!!!!!!!!! ###############")
del model
del es
del reduce_lr
for i in range(len(permutations)):
print(np.mean(accTrain[i]),np.mean(accTest[i]),np.mean(accTrain1[i]),np.mean(accTest1[i]))
#for i in range(200):
#
#
## model.fit([funx(i,maxL) for i in range(maxL)],y_train, epochs=1220,batch_size=100,
## validation_data=([funx(i,maxL,Test=True) for i in range(maxL)],y_test),
## callbacks=[es,reduce_lr])
#
# model.fit([funx(i,maxL) for i in range(maxL)],y_train, epochs=10,batch_size=100,
# validation_data=([funx(i,maxL,Test=True) for i in range(maxL)],y_test),
# callbacks=[es,reduce_lr])
#
#
#
# data1=model.predict([funx(i,maxL,Test=True) for i in range(maxL)])
#
# accTest=accuracy(data1,y_test)
#
#
# print("Test Accuracy:",accTest)