-
Notifications
You must be signed in to change notification settings - Fork 0
/
template.py
139 lines (120 loc) · 5.28 KB
/
template.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
"""
SynthTIGER
Copyright (c) 2021-present NAVER Corp.
MIT license
"""
import os
import re
import json
import numpy as np
from typing import Any, List
from PIL import Image, ImageDraw
from elements import Document, Background
from synthtiger import templates, components, layers
class Templates(templates.Template):
def __init__(self, config, split_ratio: List[float]=[0.8,0.1,0.1]):
super().__init__(config)
if config is None:
config = {}
self.quality = config.get("quality", [50, 95])
self.landscape = config.get("landscape", 0.5)
self.short_size = config.get("short_size", [720, 1024])
self.aspect_ratio = config.get("aspect_ratio", [1, 2])
self.background = Background(config.get("background", {}))
self.document = Document(config.get("document", {}))
self.effect = components.Iterator(
[
components.Switch(components.RGB()),
components.Switch(components.Shadow()),
components.Switch(components.Contrast()),
components.Switch(components.Brightness()),
components.Switch(components.MotionBlur()),
components.Switch(components.GaussianBlur()),
],
**config.get("effect", {}),
)
# config for splits
self.splits = ["train", "validation", "test"]
self.split_ratio = split_ratio
self.split_indexes = np.random.choice(3, size=10000, p=split_ratio)
def generate(self):
landscape = np.random.rand() < self.landscape
short_size = np.random.randint(self.short_size[0], self.short_size[1] + 1)
aspect_ratio = np.random.uniform(self.aspect_ratio[0], self.aspect_ratio[1])
long_size = int(short_size * aspect_ratio)
size = (long_size, short_size) if landscape else (short_size, long_size)
bg_layer = self.background.generate(size)
paper_layer, text_layers, texts = self.document.generate(size)
document_group = layers.Group([*text_layers, paper_layer])
document_space = np.clip(size - document_group.size, 0, None)
document_group.left = np.random.randint(document_space[0] + 1)
document_group.top = np.random.randint(document_space[1] + 1)
roi = np.array(paper_layer.quad, dtype=int)
layer = layers.Group([*document_group.layers, bg_layer]).merge()
self.effect.apply([layer])
# Get bouding box
quad_info = []
for text_layer, text in zip(text_layers, texts):
coord = [int(x) for x in text_layer.quad.flatten().tolist()]
quad_info.append([coord, text])
image = layer.output(bbox=[0, 0, *size])
label = " ".join(texts)
label = label.strip()
label = re.sub(r"\s+", " ", label)
quality = np.random.randint(self.quality[0], self.quality[1] + 1)
data = {
"image": image,
"label": label,
"quality": quality,
"roi": roi,
"bboxes": quad_info,
}
return data
def init_save(self, root):
if not os.path.exists(root):
os.makedirs(root, exist_ok=True)
def save(self, root, data, idx):
image = data["image"]
label = data["label"]
quality = data["quality"]
roi = data["roi"]
bboxes = data["bboxes"]
# split
split_idx = self.split_indexes[idx % len(self.split_indexes)]
output_dirpath = os.path.join(root, self.splits[split_idx])
# save image
image_filename = f"image_{idx}.jpg"
image_filepath = os.path.join(output_dirpath, image_filename)
os.makedirs(os.path.dirname(image_filepath), exist_ok=True)
image = Image.fromarray(image[..., :3].astype(np.uint8))
draw = ImageDraw.Draw(image)
for bbox in bboxes:
draw.polygon(bbox[0], outline="blue")
image.save(image_filepath, quality=quality)
# save metadata (gt_json)
metadata_filename = "metadata.jsonl"
metadata_filepath = os.path.join(output_dirpath, metadata_filename)
os.makedirs(os.path.dirname(metadata_filepath), exist_ok=True)
metadata = self.format_metadata(image_filename=image_filename, keys=["text_sequence", "bboxes"],
values=[label, bboxes])
with open(metadata_filepath, "a") as fp:
json.dump(metadata, fp, ensure_ascii=False)
fp.write("\n")
def end_save(self, root):
pass
def format_metadata(self, image_filename: str, keys: List[str], values: List[Any]):
"""
Fit gt_parse contents to huggingface dataset's format
keys and values, whose lengths are equal, are used to constrcut 'gt_parse' field in 'ground_truth' field
Args:
keys: List of task_name
values: List of actual gt data corresponding to each task_name
"""
assert len(keys) == len(values), "Length does not match: keys({}), values({})".format(len(keys), len(values))
_gt_parse_v = dict()
for k, v in zip(keys, values):
_gt_parse_v[k] = v
gt_parse = {"gt_parse": _gt_parse_v}
gt_parse_str = json.dumps(gt_parse, ensure_ascii=False)
metadata = {"file_name": image_filename, "ground_truth": gt_parse_str}
return metadata