-
Notifications
You must be signed in to change notification settings - Fork 12
/
utils_ascep.py
384 lines (336 loc) · 12.4 KB
/
utils_ascep.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
import numpy as np
import matplotlib.pyplot as plt
import numpy.linalg as LA
from scipy.sparse.linalg import svds, eigs
from numpy.linalg import svd
from sklearn import metrics
from datetime import datetime as dt
import os
import pandas as pd
import sys
import seaborn as sns
import mrc
from mrc import LazyImage
import mrcfile
### Some of code are from https://github.com/PrincetonUniversity/ASPIRE-Python and https://github.com/zhonge/cryodrgn
########### io #################
class Starfile():
def __init__(self, headers, df):
self.headers = headers
self.df = df
@classmethod
def load(self, starfile):
f = open(starfile,'r')
# get to data block
while 1:
for line in f:
if line.startswith('data_'):
break
break
# get to header loop
while 1:
for line in f:
if line.startswith('loop_'):
break
break
# get list of column headers
while 1:
headers = []
for line in f:
if line.startswith('_'):
headers.append(line)
else:
break
break
# assume the rest is the body
headers = [h.strip().split()[0] for h in headers]
body = [line]
for lines in f:
body.append(lines)
# remove last line of body if empty
if body[-1].strip() == '':
body = body[:-1]
# put data into an array and instantiate as dataframe
words = [l.strip().split() for l in body]
words = np.array(words)
data = {h:words[:,i] for i,h in enumerate(headers)}
df = pd.DataFrame(data=data)
return self(headers, df)
def write(self, outstar):
f = open(outstar,'w')
f.write('# Created {}\n'.format(dt.now()))
f.write('\n')
f.write('data_\n\n')
f.write('loop_\n')
self.headers = list(self.df)
for idx, h in enumerate(self.headers):
f.write(h+' #%s'%(idx+1))
f.write('\n')
for i in self.df.index:
f.write(' '.join(self.df.loc[i]))
f.write('\n')
#f.write('\n'.join([' '.join(self.df.loc[i]) for i in range(len(self.df))]))
def get_particles(self, datadir=None, lazy=False):
'''
Return particles of the starfile
Input:
datadir (str): Overwrite base directories of particle .mrcs
Tries both substituting the base path and prepending to the path
If lazy=True, returns list of LazyImage instances, else np.array
'''
particles = self.df['_rlnImageName']
# format is index@path_to_mrc
particles = [x.split('@') for x in particles]
ind = [int(x[0])-1 for x in particles] # convert to 0-based indexing
mrcs = [x[1] for x in particles]
if datadir is not None:
mrcs = prefix_paths(mrcs, datadir)
for path in set(mrcs):
assert os.path.exists(path), "%s not found"%path
D = mrc.parse_header(mrcs[0]).D # image size along one dimension in pixels
dtype = np.float32
stride = np.float32().itemsize*D*D
dataset = [LazyImage(f, (D,D), dtype, 1024+ii*stride) for ii,f in zip(ind, mrcs)]
if not lazy:
dataset = np.array([x.get() for x in dataset])
return dataset
def prefix_paths(mrcs, datadir):
mrcs1 = ['{}/{}'.format(datadir, os.path.basename(x)) for x in mrcs]
mrcs2 = ['{}/{}'.format(datadir, x) for x in mrcs]
try:
for path in set(mrcs1):
assert os.path.exists(path)
mrcs = mrcs1
except:
for path in set(mrcs2):
assert os.path.exists(path), "%s not found"%path
mrcs = mrcs2
return mrcs
def csparc_get_particles(csfile, datadir=None, lazy=True):
metadata = np.load(csfile)
ind = metadata['blob/idx'] # 0-based indexing
mrcs = metadata['blob/path'].astype(str).tolist()
if datadir is not None:
mrcs = prefix_paths(mrcs, datadir)
for path in set(mrcs):
assert os.path.exists(path), "%s not found"%path
D = metadata[0]['blob/shape'][0]
dtype = np.float32
stride = np.float32().itemsize*D*D
dataset = [LazyImage(f, (D,D), dtype, 1024+ii*stride) for ii,f in zip(ind, mrcs)]
if not lazy:
dataset = np.array([x.get() for x in dataset])
return dataset
########### util #################
def log(msg):
print('{} {}'.format(dt.now().strftime('%Y-%m-%d %H:%M:%S'), msg))
sys.stdout.flush()
def print_ctf_params(params):
assert len(params) == 9
log('Image size (pix) : {}'.format(int(params[0])))
log('A/pix : {}'.format(params[1]))
log('DefocusU (A) : {}'.format(params[2]))
log('DefocusV (A) : {}'.format(params[3]))
log('Dfang (deg) : {}'.format(params[4]))
log('voltage (kV) : {}'.format(params[5]))
log('cs (mm) : {}'.format(params[6]))
log('w : {}'.format(params[7]))
log('Phase shift (deg) : {}'.format(params[8]))
def parse_ctf_star(df, D, angpix=None):
N = len(df)
if angpix == None:
if set(['_rlnDetectorPixelSize','_rlnMagnification']).issubset(df.columns):
Apix = float(df['_rlnDetectorPixelSize'][0])*10000/float(df['_rlnMagnification'][0]);
else:
Apix = 1
else:
Apix = angpix
ctf_params = np.zeros((N, 9))
ctf_params[:,0] = D
ctf_params[:,1] = Apix
for i,header in enumerate(['_rlnDefocusU', '_rlnDefocusV', '_rlnDefocusAngle', '_rlnVoltage', '_rlnSphericalAberration', '_rlnAmplitudeContrast', '_rlnPhaseShift']):
ctf_params[:,i+2] = df[header]
log('CTF parameters for first particle:')
print_ctf_params(ctf_params[0])
return ctf_params
def parse_pose_star(df):
# parse rotations
N = len(df)
keys = ('_rlnAngleRot','_rlnAngleTilt','_rlnAnglePsi')
euler = np.empty((N,3))
euler[:,0] = df['_rlnAngleRot']
euler[:,1] = df['_rlnAngleTilt']
euler[:,2] = df['_rlnAnglePsi']
log('Euler angles (Rot, Tilt, Psi):')
log(euler[0])
log('Converting to rotation matrix:')
rot = np.asarray([R_from_relion(*x) for x in euler])
log(rot[0])
# parse translations
trans = np.empty((N,2))
trans[:,0] = df['_rlnOriginX']
trans[:,1] = df['_rlnOriginY']
log('Translations:')
log(trans[0])
return (euler, trans, rot)
def R_from_relion(a,b,y):
a *= np.pi/180.
b *= np.pi/180.
y *= np.pi/180.
ca, sa = np.cos(a), np.sin(a)
cb, sb = np.cos(b), np.sin(b)
cy, sy = np.cos(y), np.sin(y)
Ra = np.array([[ca,-sa,0],[sa,ca,0],[0,0,1]])
Rb = np.array([[cb,0,-sb],[0,1,0],[sb,0,cb]])
Ry = np.array(([cy,-sy,0],[sy,cy,0],[0,0,1]))
R = np.dot(np.dot(Ry,Rb),Ra)
R[0,1] *= -1
R[1,0] *= -1
R[1,2] *= -1
R[2,1] *= -1
return R
def visualise_images(X, n_images, n_columns, randomise=True):
indices = np.arange(X.shape[0])
if randomise:
np.random.shuffle(indices)
indices = indices[:n_images]
cmap = plt.cm.Greys_r
n_rows = np.ceil(n_images / n_columns)
fig = plt.figure(figsize=(2*n_columns, 2*n_rows))
fig.subplots_adjust(left=0, right=1, bottom=0, top=1, hspace=0.05, wspace=0.05)
# plot the digits: each image is 8x8 pixels
for i, e in enumerate(indices):
ax = fig.add_subplot(n_rows, n_columns, i + 1, xticks=[], yticks=[])
ax.imshow(X[e], cmap=cmap, interpolation='nearest')
def matlab2py(i_matrix):
tmp = np.swapaxes(i_matrix,0,2)
return np.swapaxes(tmp,1,2).copy()
def save_mrc(images, filename):
"""Shortcut for writing out MRC files."""
o = mrcfile.new(filename, overwrite=True)
o.set_data(images.astype(np.float32))
o.close()
def cart2pol(x, y):
"""
Convert Cartesian to Polar Coordinates. All input arguments must be the same shape.
:param x: x-coordinate in Cartesian space
:param y: y-coordinate in Cartesian space
:return: A 2-tuple of values:
theta: angular coordinate/azimuth
r: radial distance from origin
"""
return np.arctan2(y, x), np.hypot(x, y)
def grid_2d(n, shifted=False, normalized=True):
"""
Generate two dimensional grid.
:param n: the number of grid points in each dimension.
:param shifted: shifted by half of grid or not when n is even.
:param normalized: normalize the grid in the range of (-1, 1) or not.
:return: the rectangular and polar coordinates of all grid points.
"""
grid = np.ceil(np.arange(-n/2, n/2))
if shifted and n % 2 == 0:
grid = np.arange(-n/2+1/2, n/2+1/2)
if normalized:
if shifted and n % 2 == 0:
grid = grid / (n/2-1/2)
else:
grid = grid / (n/2)
x, y = np.meshgrid(grid, grid, indexing='ij')
phi, r = cart2pol(x, y)
return {
'x': x,
'y': y,
'phi': phi,
'r': r
}
def estimate_noise(in_matrix):
### in_matrix in matlab format
arr4 = np.swapaxes(in_matrix,0,2)
arr4 = np.swapaxes(arr4,0,1)
g2d = grid_2d(in_matrix.shape[1])
mask = g2d['r'] >= 1
first_moment = 0
second_moment = 0
images_masked = arr4 * np.expand_dims(mask, 2)
_denominator = in_matrix.shape[0] * np.sum(mask)
first_moment += np.sum(images_masked) / _denominator
second_moment += np.sum(np.abs(images_masked**2)) / _denominator
return second_moment - first_moment**2
############ analysis #################
def plot_euler(euler,trans,plot_psi=True,plot_trans=True):
theta = euler[:,0]
phi = euler[:,1]
psi = euler[:,2]
hexplot = sns.jointplot(theta,phi,kind='hex',
xlim=(-180,180),
ylim=(0,180)).set_axis_labels("theta", "phi")
plt.subplots_adjust(left=0.1, right=0.9, top=0.9, bottom=0.1)
cbar = hexplot.fig.add_axes([.9,.1,.04, .7])
plt.colorbar(cax=cbar)
plt.show()
if plot_psi:
plt.figure()
plt.hist(psi)
plt.xlabel('psi')
if plot_trans:
sns.jointplot(trans[:,0],trans[:,1],
kind='hex').set_axis_labels('tx','ty')
def plot_defocus(ctfs):
plt.hist(ctfs[:,2])
plt.xlabel('DefocusU (um)')
plt.figure()
plt.hist(ctfs[:,3])
plt.xlabel('DefocusV (um)')
def compute_ctf_np(freqs, dfu, dfv, dfang, volt, cs, w, phase_shift=0, bfactor=None):
'''
Compute the 2D CTF
Input:
freqs (np.ndarray) Nx2 array of 2D spatial frequencies
dfu (float): DefocusU (Angstrom)
dfv (float): DefocusV (Angstrom)
dfang (float): DefocusAngle (degrees)
volt (float): accelerating voltage (kV)
cs (float): spherical aberration (mm)
w (float): amplitude contrast ratio
phase_shift (float): degrees
bfactor (float): envelope fcn B-factor (Angstrom^2)
'''
# convert units
volt = volt * 1000
cs = cs * 10**7
dfang = dfang * np.pi / 180
phase_shift = phase_shift * np.pi / 180
# lam = sqrt(h^2/(2*m*e*Vr)); Vr = V + (e/(2*m*c^2))*V^2
lam = 12.2639 / np.sqrt(volt + 0.97845e-6 * volt**2)
x = freqs[:,0]
y = freqs[:,1]
ang = np.arctan2(y,x)
s2 = x**2 + y**2
df = .5*(dfu + dfv + (dfu-dfv)*np.cos(2*(ang-dfang)))
gamma = 2*np.pi*(-.5*df*lam*s2 + .25*cs*lam**3*s2**2) - phase_shift
ctf = np.sqrt(1-w**2)*np.sin(gamma) - w*np.cos(gamma)
if bfactor is not None:
ctf *= np.exp(-bfactor/4*s2)
return np.require(ctf,dtype=freqs.dtype)
def plot_ctf(ctf_params):
assert len(ctf_params) == 9
import matplotlib.pyplot as plt
import seaborn as sns
D = int(ctf_params[0])
Apix = ctf_params[1]
freqs = np.stack(np.meshgrid(np.linspace(-.5,.5,D,endpoint=False),np.linspace(-.5,.5,D,endpoint=False)),-1)/Apix
freqs = freqs.reshape(-1,2)
c = compute_ctf_np(freqs, *ctf_params[2:])
sns.heatmap(c.reshape(D, D))
############ metrics#################
def purity_score(y_true, y_pred):
# compute contingency matrix (also called confusion matrix)
contingency_matrix = metrics.cluster.contingency_matrix(y_true, y_pred)
# return purity
return np.sum(np.amax(contingency_matrix, axis=0)) / np.sum(contingency_matrix)
def c_purity_score(y_true, y_pred):
# compute contingency matrix (also called confusion matrix)
contingency_matrix = metrics.cluster.contingency_matrix(y_true, y_pred)
# return purity
return np.sum(np.amax(contingency_matrix, axis=1)) / np.sum(contingency_matrix)