-
Notifications
You must be signed in to change notification settings - Fork 0
/
run_dgdnerf.py
1416 lines (1210 loc) · 66.6 KB
/
run_dgdnerf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import os
import imageio
import time
from torch.utils.tensorboard import SummaryWriter
from tqdm import tqdm, trange
import math
import json
import pickle
from collections import defaultdict
import configargparse
import cv2
from run_dgdnerf_helpers import *
from utils import * # load_blender_data, load_deepdeform_data, load_owndataset_data,
try:
from apex import amp
except ImportError:
pass
import torch.nn as nn
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
if device.type == "cuda":
GPU_INDEX = os.environ.get('CUDA_VISIBLE_DEVICES', "None")
print(f"[Import] Using CUDA version {torch.version.cuda} on {torch.cuda.get_device_name(device.index).strip()} with global GPU index {GPU_INDEX}")
torch.manual_seed(0)
np.random.seed(0)
DEBUG = True
def batchify(fn, chunk):
"""Constructs a version of 'fn' that applies to smaller batches.
Args:
fn: network forward method.
chunk: number of pts sent through network in parallel.
Returns:
Function that applies the network 'fn' to chunks of position and time outputs.
"""
if chunk is None:
return fn
def ret(inputs_pos, inputs_time):
num_batches = inputs_pos.shape[0]
out_list = []
dx_list = []
for i in range(0, num_batches, chunk):
# inputs_time[0] and inputs_time[1] are the same
out, dx = fn(inputs_pos[i:i+chunk], [inputs_time[0][i:i+chunk], inputs_time[1][i:i+chunk]])
out_list += [out]
dx_list += [dx]
return torch.cat(out_list, 0), torch.cat(dx_list, 0)
return ret
def run_network(inputs, viewdirs, frame_time, fn, embed_fn, embeddirs_fn, embedtime_fn, netchunk=1024*64,
embd_time_discr=True, use_latent_codes_as_time=False):
"""Prepares inputs and applies network 'fn'.
inputs (Tensor): N_rays x N_points_per_ray x 3
viewdirs (Tensor): N_rays x 3
frame_time (Tensor): (N_rays x 1) if direct time or (N_rays, ray_bending_latent_size) if latent codes for deformation network
fn (function): network forward function
ray_bending_latents (Tensor or None): .
"""
if not use_latent_codes_as_time:
assert len(torch.unique(frame_time)) == 1, "Only accepts all points from same time"
cur_time = torch.unique(frame_time)[0]
# embed position
inputs_flat = torch.reshape(inputs, [-1, inputs.shape[-1]]) # shape: -1, 3
embedded = embed_fn(inputs_flat)
# embed views
if viewdirs is not None:
input_dirs = viewdirs[:,None].expand(inputs.shape)
input_dirs_flat = torch.reshape(input_dirs, [-1, input_dirs.shape[-1]]) # shape: -1, 3
embedded_dirs = embeddirs_fn(input_dirs_flat)
embedded = torch.cat([embedded, embedded_dirs], -1)
if use_latent_codes_as_time: # latent codes instead of time
ray_bending_latents = frame_time[:, None].expand((inputs.shape[0], inputs.shape[1], frame_time.shape[-1]))
# N_rays x N_samples_per_ray x latent_size
ray_bending_latents = torch.reshape(ray_bending_latents, [-1, ray_bending_latents.shape[-1]])
# N_rays * N_samples_per_ray x latent_size
embedded_times = [ray_bending_latents, ray_bending_latents]
elif embd_time_discr:
# embed time
B, N, _ = inputs.shape
input_frame_time = frame_time[:, None].expand([B, N, 1])
input_frame_time_flat = torch.reshape(input_frame_time, [-1, 1]) # shape: -1, 1
embedded_time = embedtime_fn(input_frame_time_flat)
embedded_times = [embedded_time, embedded_time]
else:
assert NotImplementedError
outputs_flat, position_delta_flat = batchify(fn, netchunk)(embedded, embedded_times)
outputs = torch.reshape(outputs_flat, list(inputs.shape[:-1]) + [outputs_flat.shape[-1]])
position_delta = torch.reshape(position_delta_flat, list(inputs.shape[:-1]) + [position_delta_flat.shape[-1]])
# shape: N_rays x N_points_per_ray x net_output_len
return outputs, position_delta
def batchify_rays(rays_flat, chunk=1024*32, H=None, W=None, ray_bending_latent_codes=None, **kwargs):
"""Render rays in smaller minibatches to avoid OOM errors.
Args:
rays_flat: [batch_size, 9] or [batch_size, 12] or [batch_size, 15]. all ray directions from a camera.
chunk: int. The max number of rays to process in parallel. Defaults to 1024*32.
Returns:
all_ret: dict.
all_ray_debug: dict for debugging rays
"""
all_ret = defaultdict(list)
all_ray_debug = defaultdict(list)
for i in range(0, rays_flat.shape[0], chunk):
relevant_rblc = ray_bending_latent_codes[i:i+chunk, :] if ray_bending_latent_codes is not None else None
ret, ray_debug = render_rays(rays_flat[i:i+chunk], ray_bending_latent_codes=relevant_rblc, **kwargs)
for k in ret:
all_ret[k].append(ret[k])
if ray_debug:
for k in ray_debug:
all_ray_debug[k].append(ray_debug[k])
all_ret = {k : torch.cat(all_ret[k], 0) for k in all_ret}
if all_ray_debug:
all_ray_debug = {k : torch.cat(all_ray_debug[k], 0).reshape(H, W, -1).cpu() for k in all_ray_debug}
return all_ret, all_ray_debug
def render(H, W, focal_x, focal_y, chunk=1024*32, rays=None, c2w=None, ndc=True,
near=0., far=1., frame_time=None, use_latent_codes_as_time=False,
c2w_staticcam=None, ray_debug_path="", **kwargs):
"""Calls methods to render the given rays.
Args:
H: int. Height of image in pixels.
W: int. Width of image in pixels.
focal_x: float. Focal length in X direction.
focal_y: float. Focal length in Y direction.
chunk: int. Maximum number of rays to process simultaneously. Used to
control maximum memory usage. Does not affect final results.
rays: array of shape [2, batch_size, 3]. Ray origin and direction for
each example in batch.
c2w: array of shape [3, 4]. Camera-to-world transformation matrix.
Horizontal stack of the rotation matrix an the translation vector.
ndc: bool. If True, represent ray origin, direction in normalized device coordinates (NDC).
near: float or array of shape [batch_size]. Nearest distance for a ray.
far: float or array of shape [batch_size]. Farthest distance for a ray.
use_viewdirs: bool. If True, use viewing direction of a point in space in model.
c2w_staticcam: array of shape [3, 4]. If not None, use this transformation matrix for
camera while using other c2w argument for viewing directions.
Returns:
rgb_map: [batch_size, 3]. Predicted RGB values for rays.
disp_map: [batch_size]. Disparity map. Inverse of depth.
acc_map: [batch_size]. Accumulated opacity (alpha) along a ray.
depth_map: [batch_size]. Predicted depth of pixel.
extras: dict with everything returned by render_rays().
"""
rays_depth = None
if c2w is not None:
# special case to render full image
rays_o, rays_d = get_rays(H, W, focal_x, focal_y, c2w)
elif rays.shape[0] == 2:
# use provided ray batch
rays_o, rays_d = rays
else:
rays_o, rays_d, rays_depth = rays
if kwargs["use_viewdirs"]: # this is set to True when using full 5D input to the canonical model
# provide ray directions as input
viewdirs = rays_d
if c2w_staticcam is not None: # the code which sets c2w_staticcam to True is commented out in the official D-NeRF code
# special case to visualize effect of viewdirs
rays_o, rays_d = get_rays(H, W, focal_x, focal_y, c2w_staticcam)
viewdirs = viewdirs / torch.norm(viewdirs, dim=-1, keepdim=True)
viewdirs = torch.reshape(viewdirs, [-1,3]).float()
sh = rays_d.shape # [..., 3]
if ndc:
# for forward facing scenes
rays_o, rays_d = ndc_rays(H, W, focal_x, 1., rays_o, rays_d) # UNEDITED!
# Create ray batch
rays_o = torch.reshape(rays_o, [-1,3]).float()
rays_d = torch.reshape(rays_d, [-1,3]).float()
near, far = near * torch.ones_like(rays_d[...,:1]), far * torch.ones_like(rays_d[...,:1]) # [batch_size * 1] each
frame_time = frame_time * torch.ones_like(rays_d[...,:1]) # [batch_size * 1]
rays = torch.cat([rays_o, rays_d, near, far, frame_time], -1) # [batch_size * 9]
if kwargs["use_viewdirs"]:
rays = torch.cat([rays, viewdirs], -1) # [batch_size * 12]
if rays_depth is not None:
rays_depth = torch.reshape(rays_depth, [-1,3]).float()
rays = torch.cat([rays, rays_depth], -1) # [batch_size * 12] or [batch_size * 15]
# Render and reshape
all_ret, all_ray_debug = batchify_rays(rays, chunk, H, W,
ray_bending_latent_codes=frame_time if use_latent_codes_as_time else None,
**kwargs)
for k in all_ret:
k_sh = list(sh[:-1]) + list(all_ret[k].shape[1:])
all_ret[k] = torch.reshape(all_ret[k], k_sh)
# Rest is logging and packaging
if all_ray_debug:
all_ray_debug["c2w"] = c2w.cpu()
all_ray_debug["near"] = near[0, 0].item()
all_ray_debug["far"] = far[0, 0].item()
with open(ray_debug_path + "ray_debug.pickle", "wb") as f:
pickle.dump(all_ray_debug, f, pickle.HIGHEST_PROTOCOL)
k_extract = ['rgb_map', 'disp_map', 'acc_map', 'depth_map']
ret_list = [all_ret[k] for k in k_extract]
ret_dict = {k : all_ret[k] for k in all_ret if k not in k_extract}
return ret_list + [ret_dict]
def render_path(render_poses, render_times, hwff, chunk, render_kwargs, gt_imgs=None, gt_depths=None, savedir=None,
render_factor=0, save_also_gt=False, i_offset=0, ray_bending_latent_codes=None, expname=None, iteration=None):
"""Render images at the given camera poses and times.
Args:
render_poses: array of poses to be rendered.
render_times: array of corresponding times to be rendered.
hwff: (height, width, focal length in x, focal length in y)
chunk: Max num of points per batch to avoid memory issues.
render_kwargs: dict which contains train/test objects such as the run_network function.
gt_imgs: list of ground truth images. Defaults to None.
i_offset: int. . Defaults to 0.
Returns:
_type_: _description_
"""
H, W, focal_x, focal_y = hwff
if render_factor!=0:
# Render downsampled for speed
H = H//render_factor
W = W//render_factor
focal_x = focal_x/render_factor
focal_y = focal_y/render_factor
if savedir is not None:
save_dir_estim = os.path.join(savedir, "estim")
save_dir_gt = os.path.join(savedir, "gt")
save_dir_estim_depth = os.path.join(savedir, "estim_depth")
save_dir_gt_depth = os.path.join(savedir, "gt_depth")
if not os.path.exists(save_dir_estim):
os.makedirs(save_dir_estim)
if save_also_gt and not os.path.exists(save_dir_gt):
os.makedirs(save_dir_gt)
if not os.path.exists(save_dir_estim_depth):
os.makedirs(save_dir_estim_depth)
if save_also_gt and not os.path.exists(save_dir_gt_depth):
os.makedirs(save_dir_gt_depth)
rgbs = []
rgbs_gt = []
disps = []
depths = []
depths_gt = []
for i, (c2w, frame_time) in enumerate(zip(tqdm(render_poses), render_times)):
rgb, disp, acc, depth, _ = render(H, W, focal_x, focal_y, chunk=chunk, c2w=c2w[:3,:4], frame_time=frame_time, **render_kwargs)
rgb = torch.clamp(rgb,0,1)
rgbs.append(rgb.cpu().numpy())
disps.append(disp.cpu().numpy())
depths.append(depth.cpu().numpy())
if savedir is not None:
rgb8_estim = to8b(rgbs[-1])
filename = os.path.join(save_dir_estim, '{:03d}.png'.format(i+i_offset))
imageio.imwrite(filename, rgb8_estim)
depth_estim = to8d(depths[-1])
filename = os.path.join(save_dir_estim_depth, '{:03d}.png'.format(i+i_offset))
imageio.imwrite(filename, depth_estim)
if save_also_gt:
rgb_gt = gt_imgs[i]
rgb_gt = np.clip(rgb_gt,0,1)
depth_gt = gt_depths[i].squeeze()
rgbs_gt.append(rgb_gt)
depths_gt.append(depth_gt)
rgb8_gt = to8b(rgb_gt)
filename = os.path.join(save_dir_gt, '{:03d}.png'.format(i+i_offset))
imageio.imwrite(filename, rgb8_gt)
depth_gt = to8d(depth_gt)
filename = os.path.join(save_dir_gt_depth, '{:03d}.png'.format(i+i_offset))
imageio.imwrite(filename, depth_gt)
rgbs = np.stack(rgbs)
depths = np.stack(depths)
disps = np.stack(disps)
if save_also_gt:
rgbs_gt = np.stack(rgbs_gt)
depth_gt = np.stack(depths_gt)
files_dir = "./logs/" + expname + "/" + 'renderonly_test_{:06d}'.format(iteration)
compute_metrics(files_dir, rgbs, rgbs_gt, depths, depths_gt)
return rgbs, disps, depths
def create_nerf(args, autodecoder_variables=None):
"""Instantiate NeRF's MLP model.
Args:
args (dict): Model arguments.
autodecoder_variables (Tensor): Learnable latent vectors as input for deformation network.
Returns:
render_kwargs_train: dict for training configuration.
render_kwargs_test: dict for test configuration.
start (int): training step.
grad_vars: learnable parameters.
optimizer: Adam optim.
"""
grad_vars = []
if autodecoder_variables is not None:
grad_vars += autodecoder_variables
# Positional encoding
embed_fn, input_ch = get_embedder(args.multires, 3, args.i_embed) # Encode the 3D position
embedtime_fn, input_ch_time = get_embedder(args.multires, 1, args.i_embed)
input_ch_views = 0
embeddirs_fn = None
if args.use_viewdirs:
embeddirs_fn, input_ch_views = get_embedder(args.multires_views, 3, args.i_embed) # Also encode the 2D direction
# output_ch only changes the net architecture if use_viewdirs is true
output_ch = 5 if args.N_importance > 0 else 4
skips = [4]
model = NeRF.get_by_name(
args.nerf_type,
D=args.netdepth,
W=args.netwidth,
input_ch=input_ch,
output_ch=output_ch,
skips=skips,
input_ch_views=input_ch_views,
input_ch_time=input_ch_time,
use_viewdirs=args.use_viewdirs,
embed_fn=embed_fn,
zero_canonical=not args.not_zero_canonical,
use_rigidity_network=args.use_rigidity_network,
use_latent_codes_as_time=args.use_latent_codes_as_time,
ray_bending_latent_size=args.ray_bending_latent_size,
).to(device)
grad_vars += list(model.parameters())
model_fine = None
if args.use_two_models_for_fine: # fine network for hierarchical sampling
model_fine = NeRF.get_by_name(
args.nerf_type,
D=args.netdepth_fine,
W=args.netwidth_fine,
input_ch=input_ch,
output_ch=output_ch,
skips=skips,
input_ch_views=input_ch_views,
input_ch_time=input_ch_time,
use_viewdirs=args.use_viewdirs,
embed_fn=embed_fn,
zero_canonical=not args.not_zero_canonical,
use_rigidity_network=args.use_rigidty_network,
use_latent_codes_as_time=args.use_latent_codes_as_time,
ray_bending_latent_size=args.ray_bending_latent_size,
).to(device)
grad_vars += list(model_fine.parameters())
def network_query_fn(inputs, viewdirs, ts, network_fn): return run_network(inputs, viewdirs, ts, network_fn,
embed_fn=embed_fn,
embeddirs_fn=embeddirs_fn,
embedtime_fn=embedtime_fn,
netchunk=args.netchunk,
embd_time_discr=args.nerf_type != "temporal",
use_latent_codes_as_time=args.use_latent_codes_as_time,)
# Create optimizer
# Note: needs to be Adam. otherwise need to check how to avoid wrong DeepSDF-style autodecoder optimization of the per-frame latent codes.
optimizer = torch.optim.Adam(params=grad_vars, lr=args.lrate, betas=(0.9, 0.999))
if args.do_half_precision:
print("[Config] Run model at half precision")
if model_fine is not None:
[model, model_fine], optimizers = amp.initialize([model, model_fine], optimizer, opt_level='O1')
else:
model, optimizers = amp.initialize(model, optimizer, opt_level='O1')
start = 0
basedir = args.basedir
expname = args.expname
##########################
# Load checkpoints
if args.ft_path is not None and args.ft_path!='None':
ckpts = [args.ft_path]
else:
ckpts = [os.path.join(basedir, expname, f) for f in sorted(os.listdir(os.path.join(basedir, expname))) if 'tar' in f]
if len(ckpts) > 0:
print("[Info] Found ckpts:\n\t\t" + '\n\t\t'.join(ckpts))
else:
print("[Info] Found no ckpts")
if len(ckpts) > 0 and (not args.no_reload or args.render_only):
ckpt_path = ckpts[-1]
print('[Config] Reloading from', ckpt_path)
ckpt = torch.load(ckpt_path, map_location=device) # will map storages to the given device
start = ckpt['global_step']
optimizer.load_state_dict(ckpt['optimizer_state_dict'])
# Load model
model.load_state_dict(ckpt['network_fn_state_dict'])
if model_fine is not None:
model_fine.load_state_dict(ckpt['network_fine_state_dict'])
if args.do_half_precision:
amp.load_state_dict(ckpt['amp'])
if autodecoder_variables is not None:
for latent, saved_latent in zip(autodecoder_variables, ckpt["ray_bending_latent_codes"]):
latent.data[:] = saved_latent[:].detach().clone()
##########################
render_kwargs_train = {
'network_query_fn' : network_query_fn,
'perturb' : args.perturb, # set to 0. for no jitter, 1. for jitter
'N_importance' : args.N_importance, # number of additional fine samples per ray
'network_fine': model_fine,
'N_samples' : args.N_samples, # number of coarse samples per ray
'network_fn' : model,
'use_viewdirs' : args.use_viewdirs,
'white_bkgd' : args.white_bkgd,
'raw_noise_std' : args.raw_noise_std,
'use_two_models_for_fine' : args.use_two_models_for_fine,
}
# NDC only good for LLFF-style forward facing data
if args.dataset_type != 'llff' or args.no_ndc:
render_kwargs_train['ndc'] = False
render_kwargs_train['lindisp'] = args.lindisp
render_kwargs_test = {k : render_kwargs_train[k] for k in render_kwargs_train}
render_kwargs_test['perturb'] = False
render_kwargs_test['raw_noise_std'] = 0.
return render_kwargs_train, render_kwargs_test, start, grad_vars, optimizer
def raw2outputs(raw, z_vals, rays_d, raw_noise_std=0, white_bkgd=False, pytest=False):
"""Transforms model's predictions to semantically meaningful values. This is sec. 4.2 in D-NeRF.
Args:
raw: [num_rays, num_samples along ray, 4]. Prediction from model.
z_vals: [num_rays, num_samples along ray]. Integration time.
rays_d: [num_rays, 3]. Direction of each ray.
Returns:
rgb_map: [num_rays, 3]. Estimated RGB color of a ray.
disp_map: [num_rays]. Disparity map. Inverse of depth map.
acc_map: [num_rays]. Sum of weights along each ray.
weights: [num_rays, num_samples]. Weights assigned to each sampled color.
depth_map: [num_rays]. Estimated distance to object.
"""
dists = z_vals[...,1:] - z_vals[...,:-1]
dists = torch.cat([dists, torch.Tensor([1e10]).expand(dists[...,:1].shape)], -1) # [N_rays, N_samples]
dists = dists * torch.norm(rays_d[...,None,:], dim=-1)
rgb = torch.sigmoid(raw[...,:3]) # [N_rays, N_samples, 3]
noise = 0.
if raw_noise_std > 0.:
noise = torch.randn(raw[...,3].shape) * raw_noise_std
# Overwrite randomly sampled data if pytest
if pytest:
np.random.seed(0)
noise = np.random.rand(*list(raw[...,3].shape)) * raw_noise_std
noise = torch.Tensor(noise)
# D-NeRF-Eq. (7)
raw2alpha = lambda raw, dists, act_fn=F.relu: 1.-torch.exp(-act_fn(raw)*dists)
alpha = raw2alpha(raw[...,3] + noise, dists) # [N_rays, N_samples]
# weights = alpha * tf.math.cumprod(1.-alpha + 1e-10, -1, exclusive=True)
# Combines D-NeRF-Eq. (8) and alpha
weights = alpha * torch.cumprod(torch.cat([torch.ones((alpha.shape[0], 1)), 1.-alpha + 1e-10], -1), -1)[:, :-1]
# D-NeRF-Eq. (6)
rgb_map = torch.sum(weights[...,None] * rgb, -2) # [N_rays, 3]
depth_map = torch.sum(weights * z_vals, -1)
depth_std_map = ((((z_vals - depth_map.unsqueeze(-1)).pow(2) * weights).sum(-1)) + 1e-6).sqrt()
disp_map = 1./torch.max(1e-10 * torch.ones_like(depth_map), depth_map / torch.sum(weights, -1))
acc_map = torch.sum(weights, -1)
if white_bkgd:
rgb_map = rgb_map + (1.-acc_map[...,None])
# rgb_map = rgb_map + torch.cat([acc_map[..., None] * 0, acc_map[..., None] * 0, (1. - acc_map[..., None])], -1)
return rgb_map, disp_map, acc_map, weights, depth_map, depth_std_map
def stratified_samples(z_vals, pytest=False):
# get intervals between samples
mids = .5 * (z_vals[...,1:] + z_vals[...,:-1])
upper = torch.cat([mids, z_vals[...,-1:]], -1)
lower = torch.cat([z_vals[...,:1], mids], -1)
# stratified samples in those intervals
t_rand = torch.rand(z_vals.shape)
# Pytest, overwrite u with numpy's fixed random numbers
if pytest:
np.random.seed(0)
t_rand = np.random.rand(*list(z_vals.shape))
t_rand = torch.Tensor(t_rand)
z_vals = lower + (upper - lower) * t_rand
return z_vals
def render_rays(ray_batch,
network_fn,
network_query_fn,
N_samples,
retraw=False,
lindisp=False,
perturb=0.,
N_importance=0,
network_fine=None,
white_bkgd=False,
raw_noise_std=0.,
verbose=False,
pytest=False,
z_vals=None,
ray_bending_latent_codes=None,
use_two_models_for_fine=False,
use_viewdirs=False,
use_depth_guided_sampling=False,
debug_rays=False):
"""Performs volumetric rendering, i.e. computes a RGB images and depth map by querying the model in spatial
locations along the given rays and computing the volume rendering integral.
Args:
ray_batch: array of shape [batch_size, ...]. All information necessary
for sampling along a ray, including: ray origin, ray direction, min
dist, max dist, and unit-magnitude viewing direction.
network_fn: function. Model for predicting RGB and density at each point
in space.
network_query_fn: function used for passing queries to network_fn.
N_samples: int. Number of different times to sample along each ray.
retraw: bool. If True, include model's raw, unprocessed predictions.
lindisp: bool. If True, sample linearly in inverse depth rather than in depth.
perturb: float, 0 or 1. If non-zero, each ray is sampled at stratified
random points in time.
N_importance: int. Number of additional times to sample along each ray.
These samples are only passed to network_fine.
network_fine: "fine" network with same spec as network_fn.
white_bkgd: bool. If True, assume a white background.
raw_noise_std: not needed for us.
verbose: bool. If True, print more debugging info.
z_vals: [num_rays, num_samples along ray]. Integration time.
Returns:
ret (dict): Dictionary with these keys:
rgb_map: [num_rays, 3]. Estimated RGB color of a ray. Comes from fine model.
disp_map: [num_rays]. Disparity map. 1 / depth.
acc_map: [num_rays]. Accumulated opacity along each ray. Comes from fine model.
depth_map: [num_rays]
raw: [num_rays, num_samples, 5]. Raw predictions from model.
z_vals: [num_rays, N_samples] Sample locations along the rays.
position_delta: TODO
rgb0: See rgb_map. Output for coarse model.
disp0: See disp_map. Output for coarse model.
acc0: See acc_map. Output for coarse model.
depth0: See depth_map. Output for coarse model.
z_std: [num_rays]. Standard deviation of distances along ray for each sample.
position_delta_0: TODO
z_std: Standard deviation of the predicted depth.
"""
N_rays = ray_batch.shape[0]
rays_o, rays_d = ray_batch[:,0:3], ray_batch[:,3:6] # [N_rays, 3] each
bounds = torch.reshape(ray_batch[...,6:9], [-1,1,3])
near, far, frame_time = bounds[...,0], bounds[...,1], bounds[...,2] # [N_rays,1] each
# viewdirs = ray_batch[:,-3:] if ray_batch.shape[-1] > 9 else None
z_samples, z_coarse, z_fine = None, None, None
rgb_map_0, disp_map_0, acc_map_0, depth_map_0, depth_std_map_0, position_delta_0 = None, None, None, None, None, None
viewdirs = None
depth_range = None
if use_viewdirs:
viewdirs = ray_batch[:, 9:12]
if ray_batch.shape[-1] > 12:
depth_range = ray_batch[:, 12:15]
else:
if ray_batch.shape[-1] > 9:
depth_range = ray_batch[:, 9:12]
if ray_bending_latent_codes is not None:
frame_time = ray_bending_latent_codes
if z_vals is None:
# create coarse integration locations along the rays
t_vals = torch.linspace(0., 1., steps=N_samples)
if not lindisp:
z_coarse = near * (1.-t_vals) + far * (t_vals)
else:
z_coarse = 1./(1./near * (1.-t_vals) + 1./far * (t_vals))
z_coarse = z_coarse.expand([N_rays, N_samples])
# compute a lower bound for the sampling standard deviation as the maximal distance between samples
lower_bound = z_coarse[0, -1] - z_coarse[0, -2]
# Add stratified perturbations
z_coarse = stratified_samples(z_coarse, pytest=pytest) if perturb > 0. else z_coarse
pts = rays_o[...,None,:] + rays_d[...,None,:] * z_coarse[...,:,None] # [N_rays, N_samples, 3]
if N_importance > 0: # If fine samples wanted
if use_two_models_for_fine:
# Forward pass for coarse samples with a separate coarse network
raw, position_delta_0 = network_query_fn(pts, viewdirs, frame_time, network_fn)
rgb_map_0, disp_map_0, acc_map_0, weights, depth_map_0, depth_std_map_0 = raw2outputs(raw, z_coarse, rays_d, raw_noise_std, white_bkgd, pytest=pytest)
else:
# Forward pass for coarse samples with the same network
with torch.no_grad():
raw, _ = network_query_fn(pts, viewdirs, frame_time, network_fn)
_, _, _, weights, _, _ = raw2outputs(raw, z_coarse, rays_d, raw_noise_std, white_bkgd, pytest=pytest)
if use_depth_guided_sampling:
# Get fine samples from depth guided sampling
if depth_range is not None:
# Train time: use precomputed samples along the whole ray and additionally sample around the depth
valid_depth = depth_range[:,0] >= near[0, 0]
invalid_depth = valid_depth.logical_not()
z_fine = torch.zeros((N_rays, N_importance))
# sample around the predicted depth from the first half of samples, if the input depth is invalid
z_fine[invalid_depth] = compute_samples_around_depth(raw.detach()[invalid_depth], z_coarse[invalid_depth], rays_d[invalid_depth],
N_importance, perturb, lower_bound, near[0, 0], far[0, 0], device=device)
# sample with in 3 sigma of the input depth, if it is valid
z_fine[valid_depth] = sample_3sigma(depth_range[valid_depth, 1], depth_range[valid_depth, 2],
N_importance, perturb == 0., near[0, 0], far[0, 0], device=device)
else:
# Test time: use precomputed samples along the whole ray and additionally sample around the predicted depth from the first half of samples
z_fine = compute_samples_around_depth(raw, z_coarse, rays_d, N_importance,
perturb, lower_bound, near[0, 0], far[0, 0], device=device)
# Combine coarse and fine integration locations
z_vals = torch.cat((z_coarse, z_fine), -1)
z_vals, indices = z_vals.sort()
else:
# Get fine samples from hierarchical sampling
z_vals_mid = .5 * (z_coarse[...,1:] + z_coarse[...,:-1])
z_fine = sample_pdf(z_vals_mid, weights[...,1:-1], N_importance, det=(perturb==0.), pytest=pytest)
z_fine = z_fine.detach()
z_vals, _ = torch.sort(torch.cat([z_coarse, z_fine], -1), -1)
else:
z_vals = z_coarse
pts = rays_o[...,None,:] + rays_d[...,None,:] * z_vals[...,:,None] # [N_rays, N_samples + N_importance, 3]
run_fn = network_fn if network_fine is None else network_fine
raw, position_delta = network_query_fn(pts, viewdirs, frame_time, run_fn)
rgb_map, disp_map, acc_map, weights, depth_map, depth_std_map = raw2outputs(raw, z_vals, rays_d, raw_noise_std, white_bkgd, pytest=pytest)
# Rest is logging and returning
ray_debug = None
if debug_rays:
ray_debug = {
"rays_o": rays_o,
"rays_d": rays_d,
"rgb_map": rgb_map,
"depth_map": depth_map,
}
if z_coarse is not None:
ray_debug["z_coarse"] = z_coarse
if z_fine is not None:
ray_debug["z_fine"] = z_fine
else:
ray_debug["z_vals"] = z_vals
ret = {
'rgb_map': rgb_map,
'disp_map': disp_map,
'acc_map': acc_map,
'depth_map': depth_map,
'depth_std_map': depth_std_map,
'z_vals': z_vals,
'position_delta': position_delta
}
if retraw:
ret['raw'] = raw
if N_importance > 0:
if rgb_map_0 is not None:
ret['rgb0'] = rgb_map_0
if disp_map_0 is not None:
ret['disp0'] = disp_map_0
if acc_map_0 is not None:
ret['acc0'] = acc_map_0
if depth_map_0 is not None:
ret['depth0'] = depth_map_0
if depth_std_map_0 is not None:
ret['depthstd0'] = depth_std_map_0
if position_delta_0 is not None:
ret['position_delta_0'] = position_delta_0
if z_samples is not None:
ret['z_std'] = torch.std(z_samples, dim=-1, unbiased=False) # [N_rays]
for k in ret:
if (torch.isnan(ret[k]).any() or torch.isinf(ret[k]).any()) and DEBUG:
print(f"! [Numerical Error] {k} contains nan or inf.")
return ret, ray_debug
def config_parser():
parser = configargparse.ArgumentParser()
parser.add_argument('--config', is_config_file=True,
help='config file path')
parser.add_argument("--expname", type=str,
help='experiment name')
parser.add_argument("--basedir", type=str, default='./logs/',
help='where to store ckpts and logs')
parser.add_argument("--datadir", type=str, default='./data/llff/fern',
help='input data directory')
# network architecture options
parser.add_argument("--nerf_type", type=str, default="original",
help='nerf network type. Options: original / temporal')
parser.add_argument("--netdepth", type=int, default=8,
help='layers in network')
parser.add_argument("--netwidth", type=int, default=256,
help='channels per layer')
parser.add_argument("--netdepth_fine", type=int, default=8,
help='layers in fine network')
parser.add_argument("--netwidth_fine", type=int, default=256,
help='channels per layer in fine network')
parser.add_argument("--use_rigidity_network", action='store_true',
help='if set to true use rigidity network')
parser.add_argument("--use_latent_codes_as_time", action="store_true",
help="learnable latent codes instead of time input to deformation network")
parser.add_argument("--ray_bending_latent_size", type=int, default=32,
help="size of per-frame autodecoding latent vector used for deformation network")
# rendering options
parser.add_argument("--N_samples", type=int, default=64,
help='number of coarse samples per ray')
parser.add_argument("--not_zero_canonical", action='store_true',
help='if set zero time is not the canonic space')
parser.add_argument("--N_importance", type=int, default=0,
help='number of additional fine samples per ray')
parser.add_argument("--perturb", type=float, default=1.,
help='set to 0. for no jitter, 1. for jitter')
parser.add_argument("--use_viewdirs", action='store_true',
help='use full 5D input instead of 3D')
parser.add_argument("--i_embed", type=int, default=0,
help='set 0 for default positional encoding, -1 for none')
parser.add_argument("--multires", type=int, default=10,
help='log2 of max freq for positional encoding (3D location)')
parser.add_argument("--multires_views", type=int, default=4,
help='log2 of max freq for positional encoding (2D direction)')
parser.add_argument("--raw_noise_std", type=float, default=0.,
help='std dev of noise added to regularize sigma_a output, 1e0 recommended')
parser.add_argument("--use_two_models_for_fine", action='store_true',
help='use two models for fine results')
parser.add_argument("--use_depth_guided_sampling", action='store_true',
help='use depth guided sampling instead of hierarchical sampling')
parser.add_argument("--render_only", action='store_true',
help='do not optimize, reload weights and render out render_poses path')
parser.add_argument("--render_test", action='store_true',
help='render the test set instead of render_poses path')
parser.add_argument("--render_factor", type=int, default=0,
help='downsampling factor to speed up rendering, set 4 or 8 for fast preview')
parser.add_argument("--render_pose_type", type=str, default="spherical",
help='render pose trajectory. Options depend on data loader implementation: spherical / spiral / static / original_trajectory / stat_dyn_stat / dynamic') # For explanations look in the docstrings in load_owndataset.py
parser.add_argument("--slowmo", action='store_true',
help='slow-motion effect in rendering video')
# training options
parser.add_argument("--N_iter", type=int, default=500000,
help='num training iterations')
parser.add_argument("--N_rand", type=int, default=32*32*4,
help='batch size (number of random rays per gradient step)')
parser.add_argument("--do_half_precision", action='store_true',
help='do half precision training and inference')
parser.add_argument("--lrate", type=float, default=5e-4,
help='learning rate')
parser.add_argument("--lrate_decay", type=int, default=250,
help='exponential learning rate decay (in 1000 steps)')
parser.add_argument("--chunk", type=int, default=1024*32,
help='number of rays processed in parallel, decrease if running out of memory')
parser.add_argument("--netchunk", type=int, default=1024*64,
help='number of pts sent through network in parallel, decrease if running out of memory')
parser.add_argument("--no_batching", action='store_true',
help='only take random rays from 1 image at a time')
parser.add_argument("--no_reload", action='store_true',
help='do not reload weights from saved ckpt')
parser.add_argument("--ft_path", type=str, default=None,
help='specific weights npy file to reload for coarse network')
parser.add_argument("--precrop_iters", type=int, default=0,
help='number of steps to train on central crops')
parser.add_argument("--precrop_iters_time", type=int, default=0,
help='number of steps to train on central time')
parser.add_argument("--precrop_frac", type=float,
default=.5, help='fraction of img taken for central crops')
parser.add_argument("--add_tv_loss", action='store_true',
help='evaluate tv loss')
parser.add_argument("--tv_loss_weight", type=float,
default=1.e-4, help='weight of tv loss')
parser.add_argument("--depth_loss_type", default="mse",
help="use depth maps for supervision with MSE or Gaussian-Neg-Log-Likelihood. Options: mse / gnll")
parser.add_argument("--depth_loss_weight", type=float,
default=0.01, help='weight of depth loss')
# dataset options
parser.add_argument("--dataset_type", type=str, default='llff',
help='options: llff / blender / deepvoxels / deepdeform / owndataset')
parser.add_argument("--testskip", type=int, default=2,
help='will load 1/N images from test/val sets, useful for large datasets like deepvoxels')
## deepvoxels flags
parser.add_argument("--shape", type=str, default='greek',
help='options : armchair / cube / greek / vase')
## blender flags
parser.add_argument("--white_bkgd", action='store_true',
help='set to render synthetic data on a white bkgd (always use for dvoxels)')
parser.add_argument("--half_res", action='store_true',
help='load blender synthetic data at 400x400 instead of 800x800')
## llff flags
parser.add_argument("--factor", type=int, default=8,
help='downsample factor for LLFF images')
parser.add_argument("--no_ndc", action='store_true',
help='do not use normalized device coordinates (set for non-forward facing scenes)')
parser.add_argument("--lindisp", action='store_true',
help='sampling linearly in disparity rather than depth')
parser.add_argument("--spherify", action='store_true',
help='set for spherical 360 scenes')
parser.add_argument("--llffhold", type=int, default=8,
help='will take every 1/N images as LLFF test set, paper uses 8')
# logging/saving options
parser.add_argument("--i_print", type=int, default=1000,
help='frequency of console printout and metric loggin')
parser.add_argument("--i_img", type=int, default=10000,
help='frequency of tensorboard image logging')
parser.add_argument("--i_weights", type=int, default=25000,
help='frequency of weight ckpt saving')
parser.add_argument("--i_testset", type=int, default=200000,
help='frequency of testset saving')
parser.add_argument("--i_video", type=int, default=200000,
help='frequency of render_poses video saving')
return parser
def train():
parser = config_parser()
args = parser.parse_args()
#################### Load data ####################
if args.dataset_type == 'blender':
images, poses, times, render_poses, render_times, hwf, i_split = load_blender_data(args.datadir, args.half_res, args.testskip)
print('Loaded blender', images.shape, render_poses.shape, hwf, args.datadir)
i_train, i_val, i_test = i_split
hwff = hwf + [hwf[2]] # focal_x = focal_y
near = 2.
far = 6.
depth_maps = None
# the RGBA-to-RGB conversion depends on the background color (alpha compositioning)
# see https://stackoverflow.com/questions/2049230/convert-rgba-color-to-rgb
if args.white_bkgd:
images = images[...,:3]*images[...,-1:] + (1.-images[...,-1:]) # (img_RGB * img_A) + (1 - img_A) * bkgd_RGB
else:
images = images[...,:3] # approximation as the background RGB values are unknown
# images = [rgb2hsv(img) for img in images]
elif args.dataset_type == 'deepdeform':
images, depth_maps, poses, times, render_poses, render_times, hwff, i_split = load_deepdeform_data(args.datadir, args.half_res, args.testskip, args.render_pose_type)
print(f"[Info] Loaded DeepDeform:\n\t\timages.shape: {images.shape}\n\t\trender_poses.shape: {render_poses.shape}\n\t\thwff: {hwff}\n\t\targs.datadir: {args.datadir}")
i_train, i_val, i_test = i_split
near = 0.1
far = np.max(depth_maps) + 0.1
print(f"[Info] Setting near plane at distance {near} and far plane at distance {far}.")
# No RGB-to-RGBA conversion needed
elif args.dataset_type == 'owndataset':
images, depth_maps, poses, times, render_poses, render_times, hwff, i_split = load_owndataset_data(args.datadir, args.half_res, args.testskip, args.render_pose_type, args.slowmo)
print(f"[Info] Loaded Own Dataset:\n\t\timages.shape: {images.shape}\n\t\trender_poses.shape: {render_poses.shape}\n\t\thwff: {hwff}\n\t\targs.datadir: {args.datadir}")
i_train, i_val, i_test = i_split
near = 0.1
far = np.max(depth_maps) + 0.1
print(f"[Info] Setting near plane at distance {near} and far plane at distance {far}.")
# savedir = "data/johannes_2"
# imageio.mimwrite(os.path.join(savedir, 'video_depth_{}.mp4'.format("original")), to8b(depth_maps/np.max(depth_maps)), fps=15, quality=8)
# imageio.mimwrite(os.path.join(savedir, 'video_{}.mp4'.format("original")), to8b(images), fps=15, quality=8)
# No RGB-to-RGBA conversion needed
else:
print('[WARNING] Unknown dataset type: ', args.dataset_type, '. Exiting')
return
min_time, max_time = times[i_train[0]], times[i_train[-1]]
if args.dataset_type == "blender":
assert min_time == 0., "time must start at 0"
assert max_time == 1., "max time must be 1"
elif args.dataset_type == "deepdeform": # There cannot be a t=0 img in every split in DeepDeform
assert min_time >= 0., "time must be >= 0"
assert max_time <= 1., "max time must be <= 1"
if args.depth_loss_type not in ["mse", "gnll"]:
print(f"[WARNING] Invalid depth loss type: {args.depth_loss_type}. Exiting.")
return
comp_depth = True if args.depth_loss_weight > 0 or args.use_depth_guided_sampling else False
if depth_maps is None and comp_depth:
print("[WARNING] No depth maps loaded. Cannot apply depth loss. Exiting.")
return
print(f"[Config] Experiment name: {args.expname}")
#################### Set up training ####################
# Cast intrinsics to right types
H, W, focal_x, focal_y = hwff
H, W = int(H), int(W)
hwff = [H, W, focal_x, focal_y]
if args.render_test:
render_poses = np.array(poses[i_test])
render_times = np.array(times[i_test])
# Create log dir and copy the config file
basedir = args.basedir
expname = args.expname
os.makedirs(os.path.join(basedir, expname), exist_ok=True)
with open(os.path.join(basedir, expname, 'args.txt'), 'w') as file:
vars_dict = vars(args)
vars_dict["CUDA_VISIBLE_DEVICES"] = GPU_INDEX
vars_dict["hwff"] = hwff
vars_dict["near_and_far"] = [near, far]
for arg in sorted(vars_dict):
attr = getattr(args, arg)
file.write('{} = {}\n'.format(arg, attr))
if args.config is not None:
config_text = open(args.config, 'r').read()
with open(os.path.join(basedir, expname, 'config.txt'), 'w') as file:
file.write(config_text)
ray_bending_latents_list = []
if args.use_latent_codes_as_time:
# create autodecoder variables as pytorch tensors
ray_bending_latents_list = [
torch.zeros(args.ray_bending_latent_size) for _ in range(len(times))
]
for latent in ray_bending_latents_list:
latent.requires_grad = True
# select nearest timesteps from latents list
render_times = [ray_bending_latents_list[int(t*(len(ray_bending_latents_list)-1))].clone().detach() for t in render_times]
# Create nerf model
render_kwargs_train, render_kwargs_test, start, grad_vars, optimizer = create_nerf(args, autodecoder_variables=ray_bending_latents_list)
global_step = start
bds_dict = {
'near' : near,
'far' : far,
"use_depth_guided_sampling": args.use_depth_guided_sampling,
"use_latent_codes_as_time": args.use_latent_codes_as_time,
}
render_kwargs_train.update(bds_dict)
render_kwargs_test.update(bds_dict)
# Move testing data to GPU
render_poses = torch.Tensor(render_poses).to(device)
if args.use_latent_codes_as_time:
render_times = [t.to(device) for t in render_times]
else:
render_times = torch.Tensor(render_times).to(device)
# Short circuit if only rendering out from trained model
if args.render_only:
print('[Config] RENDER ONLY')
with torch.no_grad():
if args.render_test:
# render_test switches to test poses
images = images[i_test]
gt_depths = depth_maps[i_test]