-
Notifications
You must be signed in to change notification settings - Fork 0
/
307-BS-VannaVolga.tex
827 lines (665 loc) · 39.9 KB
/
307-BS-VannaVolga.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
\documentclass[]{tufte-book}
% ams
\usepackage{amssymb,amsmath}
\usepackage{ifxetex,ifluatex}
\usepackage{fixltx2e} % provides \textsubscript
\ifnum 0\ifxetex 1\fi\ifluatex 1\fi=0 % if pdftex
\usepackage[T1]{fontenc}
\usepackage[utf8]{inputenc}
\else % if luatex or xelatex
\makeatletter
\@ifpackageloaded{fontspec}{}{\usepackage{fontspec}}
\makeatother
\defaultfontfeatures{Ligatures=TeX,Scale=MatchLowercase}
\makeatletter
\@ifpackageloaded{soul}{
\renewcommand\allcapsspacing[1]{{\addfontfeature{LetterSpace=15}#1}}
\renewcommand\smallcapsspacing[1]{{\addfontfeature{LetterSpace=10}#1}}
}{}
\makeatother
\fi
% graphix
\usepackage{graphicx}
\setkeys{Gin}{width=\linewidth,totalheight=\textheight,keepaspectratio}
% booktabs
\usepackage{booktabs}
% url
\usepackage{url}
% hyperref
\usepackage{hyperref}
% units.
\usepackage{units}
\setcounter{secnumdepth}{2}
% citations
% pandoc syntax highlighting
\usepackage{color}
\usepackage{fancyvrb}
\newcommand{\VerbBar}{|}
\newcommand{\VERB}{\Verb[commandchars=\\\{\}]}
\DefineVerbatimEnvironment{Highlighting}{Verbatim}{commandchars=\\\{\}}
% Add ',fontsize=\small' for more characters per line
\newenvironment{Shaded}{}{}
\newcommand{\AlertTok}[1]{\textcolor[rgb]{1.00,0.00,0.00}{\textbf{#1}}}
\newcommand{\AnnotationTok}[1]{\textcolor[rgb]{0.38,0.63,0.69}{\textbf{\textit{#1}}}}
\newcommand{\AttributeTok}[1]{\textcolor[rgb]{0.49,0.56,0.16}{#1}}
\newcommand{\BaseNTok}[1]{\textcolor[rgb]{0.25,0.63,0.44}{#1}}
\newcommand{\BuiltInTok}[1]{\textcolor[rgb]{0.00,0.50,0.00}{#1}}
\newcommand{\CharTok}[1]{\textcolor[rgb]{0.25,0.44,0.63}{#1}}
\newcommand{\CommentTok}[1]{\textcolor[rgb]{0.38,0.63,0.69}{\textit{#1}}}
\newcommand{\CommentVarTok}[1]{\textcolor[rgb]{0.38,0.63,0.69}{\textbf{\textit{#1}}}}
\newcommand{\ConstantTok}[1]{\textcolor[rgb]{0.53,0.00,0.00}{#1}}
\newcommand{\ControlFlowTok}[1]{\textcolor[rgb]{0.00,0.44,0.13}{\textbf{#1}}}
\newcommand{\DataTypeTok}[1]{\textcolor[rgb]{0.56,0.13,0.00}{#1}}
\newcommand{\DecValTok}[1]{\textcolor[rgb]{0.25,0.63,0.44}{#1}}
\newcommand{\DocumentationTok}[1]{\textcolor[rgb]{0.73,0.13,0.13}{\textit{#1}}}
\newcommand{\ErrorTok}[1]{\textcolor[rgb]{1.00,0.00,0.00}{\textbf{#1}}}
\newcommand{\ExtensionTok}[1]{#1}
\newcommand{\FloatTok}[1]{\textcolor[rgb]{0.25,0.63,0.44}{#1}}
\newcommand{\FunctionTok}[1]{\textcolor[rgb]{0.02,0.16,0.49}{#1}}
\newcommand{\ImportTok}[1]{\textcolor[rgb]{0.00,0.50,0.00}{\textbf{#1}}}
\newcommand{\InformationTok}[1]{\textcolor[rgb]{0.38,0.63,0.69}{\textbf{\textit{#1}}}}
\newcommand{\KeywordTok}[1]{\textcolor[rgb]{0.00,0.44,0.13}{\textbf{#1}}}
\newcommand{\NormalTok}[1]{#1}
\newcommand{\OperatorTok}[1]{\textcolor[rgb]{0.40,0.40,0.40}{#1}}
\newcommand{\OtherTok}[1]{\textcolor[rgb]{0.00,0.44,0.13}{#1}}
\newcommand{\PreprocessorTok}[1]{\textcolor[rgb]{0.74,0.48,0.00}{#1}}
\newcommand{\RegionMarkerTok}[1]{#1}
\newcommand{\SpecialCharTok}[1]{\textcolor[rgb]{0.25,0.44,0.63}{#1}}
\newcommand{\SpecialStringTok}[1]{\textcolor[rgb]{0.73,0.40,0.53}{#1}}
\newcommand{\StringTok}[1]{\textcolor[rgb]{0.25,0.44,0.63}{#1}}
\newcommand{\VariableTok}[1]{\textcolor[rgb]{0.10,0.09,0.49}{#1}}
\newcommand{\VerbatimStringTok}[1]{\textcolor[rgb]{0.25,0.44,0.63}{#1}}
\newcommand{\WarningTok}[1]{\textcolor[rgb]{0.38,0.63,0.69}{\textbf{\textit{#1}}}}
% table with pandoc
\usepackage{longtable,booktabs,array}
\usepackage{calc} % for calculating minipage widths
% Correct order of tables after \paragraph or \subparagraph
\usepackage{etoolbox}
\makeatletter
\patchcmd\longtable{\par}{\if@noskipsec\mbox{}\fi\par}{}{}
\makeatother
% Allow footnotes in longtable head/foot
\IfFileExists{footnotehyper.sty}{\usepackage{footnotehyper}}{\usepackage{footnote}}
\makesavenoteenv{longtable}
% multiplecol
\usepackage{multicol}
% strikeout
\usepackage[normalem]{ulem}
% morefloats
\usepackage{morefloats}
% tightlist macro required by pandoc >= 1.14
\providecommand{\tightlist}{%
\setlength{\itemsep}{0pt}\setlength{\parskip}{0pt}}
% title / author / date
\date{}
% Preamble from Rmetrics
\usepackage{booktabs}
\usepackage{amsthm}
\usepackage{xfrac}
\makeatletter
\def\thm@space@setup{%
\thm@preskip=8pt plus 2pt minus 4pt
\thm@postskip=\thm@preskip
}
\makeatother
% Index
\usepackage{makeidx}
\makeindex
% binomial trees
\usepackage{pgfplots}
\usepackage{tikz}
\usetikzlibrary{shapes.multipart}
\usepackage{pgfplots}
\usetikzlibrary{shapes}
\usetikzlibrary{external}
\usepgfplotslibrary{external}
\usetikzlibrary{positioning}
\pgfplotsset{compat=1.18}
% R and other languages
\newcommand{\RR}{\textsf{R}}
\newcommand{\Rmetrics}{Rmetrics}
%\newcommand{`r to_index("", "functions")`}[1]{\texttt{#1()}\index{R~functions@\RR~functions!#1}}
%\newcommand{`r to_index("", "classes")`}[1]{\texttt{#1}}
%\newcommand{`r to_index("", "classes")`}[1]{\texttt{#1}\index{R~classes@\RR~classes!#1}}
%\newcommand{\pkg}[1]{\texttt{#1}\index{R~packages@\RR~packages!#1}}
%\newcommand{\dataset}[1]{\texttt{#1}\index{R~data@\RR~data!#1}}
%\newcommand{\code}[1]{\texttt{#1}\index{#1}}
% Preamble from VIP
\newcommand{\given}{\mid}
\renewcommand{\neg}{\mathbin{\sim}}
\renewcommand{\wedge}{\mathbin{\&}}
\renewcommand{\u}{U}
\newcommand{\gt}{>}
\newcommand{\p}{Pr}
\newcommand{\E}{E}
\newcommand{\EU}{EU}
\newcommand{\pr}{Pr}
\newcommand{\po}{Pr^*}
\newcommand{\degr}{^{\circ}}
\definecolor{bookred}{RGB}{228,6,19}
\definecolor{bookblue}{RGB}{0,92,169}
\definecolor{bookpurple}{RGB}{114,49,94}
\newenvironment{epigraph}%
{
\begin{flushright}
\begin{minipage}{20em}
\begin{flushright}
\itshape
}%
{
\end{flushright}
\end{minipage}
\end{flushright}
}
\newenvironment{problem}{\begin{quote}\normalsize}{\end{quote}}
\newenvironment{puzzle}{\begin{quote}\normalsize}{\end{quote}}
\def\argument{\list{}{\leftmargin3em}\item[]}
\let\endargument=\endlist
\usepackage{fontawesome}
\newenvironment{warning}{\begin{itemize}\item[\faBan]}{\end{itemize}}
\usepackage{marvosym}
\newenvironment{info}{\begin{itemize}\item[\Info]}{\end{itemize}}
%%%% Kevin Godny's code for title page and contents from https://groups.google.com/forum/#!topic/tufte-latex/ujdzrktC1BQ
\makeatletter
\renewcommand{\maketitlepage}{%
\begingroup%
\setlength{\parindent}{0pt}
{\fontsize{18}{18}\selectfont\textit{\@author}\par}
\vspace{1.75in}{\fontsize{36}{14}\selectfont\@title\par}
\vspace{0.5in}{\fontsize{20}{14}\selectfont with R and Rmetrics\par}
\vspace{0.5in}{\fontsize{14}{14}\selectfont\textsf{\smallcaps{v 2.0}}\par}
\vfill{\fontsize{14}{14}\selectfont\textit{An Open Access Publication}\par}
\thispagestyle{empty}
\endgroup
}
\makeatother
% Change shape from [display] to [block] to keep chapter numbers and titles on the same line
\titleformat{\chapter}%
[block]% shape
{\relax\ifthenelse{\NOT\boolean{@tufte@symmetric}}{\begin{fullwidth}}{}}% format applied to label+text
{\itshape\huge\thechapter}% label
{3em}% horizontal separation between label and title body
{\huge\rmfamily\itshape}% before the title body
[\ifthenelse{\NOT\boolean{@tufte@symmetric}}{\end{fullwidth}}{}]% after the title body
\usepackage{etoolbox}
% Jesse Rosenthal's code from https://groups.google.com/forum/#!topic/pandoc-discuss/wCF78X6SvwY
% Avoid new pagraph/indent after lists, quotes, etc.
\makeatletter
\newcommand{\gobblepars}{%
\@ifnextchar\par%
{\expandafter\gobblepars\@gobble}%
{}}
\newcommand{\eatpar}{\@ifnextchar\par{\@gobble}{}}
\newcommand{\forcepar}{\par}
\makeatother
\AfterEndEnvironment{quote}{\expandafter\gobblepars}
\AfterEndEnvironment{enumerate}{\expandafter\gobblepars}
\AfterEndEnvironment{itemize}{\expandafter\gobblepars}
\AfterEndEnvironment{description}{\expandafter\gobblepars}
\AfterEndEnvironment{example}{\expandafter\gobblepars}
\AfterEndEnvironment{argument}{\expandafter\gobblepars}
\AfterEndEnvironment{problem}{\expandafter\gobblepars}
\AfterEndEnvironment{info}{\expandafter\gobblepars}
\AfterEndEnvironment{warning}{\expandafter\gobblepars}
\AfterEndEnvironment{marginfigure}{\expandafter\gobblepars}
\AfterEndEnvironment{longtable}{\expandafter\gobblepars} % not working, why?
\makeatletter
\AfterEndEnvironment{longtable}{\par\@afterindentfalse\@afterheading} % this seems to work instead
\makeatother
\renewcommand*\descriptionlabel[1]{\hspace\labelsep\normalfont\em #1.}
% prevent extra space when \newthought follows \section
% see: https://tex.stackexchange.com/questions/291746/tufte-latex-newthought-after-section
\makeatletter
\def\tuftebreak{%
\if@nobreak\else
\par
\ifdim\lastskip<\tufteskipamount
\removelastskip \penalty -100
\tufteskip
\fi
\fi
}
\makeatother
% indent lists a bit
\usepackage{enumitem}
\setlist[1]{leftmargin=24pt}
\def\labelitemii{$\circ$}
\begin{document}
{
\setcounter{tocdepth}{0}
\tableofcontents
}
\hypertarget{vanna-volga-pricing-and-hedging}{%
\chapter{Vanna-Volga Pricing and Hedging}\label{vanna-volga-pricing-and-hedging}}
{\emph{If you want to know the value of a security, use the price of another\\
security that's similar to it. All the rest is strategy.}}\\
E. Derman
This chapter presents a practical method for pricing and hedging
derivatives, taking into account an uncertain volatility. This method is
very popular for Foreign Exchange derivatives, but beyond that it
illustrates an important principle of asset pricing, which is to relate
the price of a complex derivative to the known price of simpler, liquid
instruments.
\hypertarget{principle}{%
\section{Principle}\label{principle}}
The goal is to value an arbitrary option contract \(O\) by constructing a hedged
portfolio that is delta-neutral and vega-neutral in the Black-Scholes world (that is, in a world with a flat smile). We assume that the option price can be modeled by the Black-Scholes PDE with a flat but stochastic volatility. The hedged portfolio \(\Pi\), having a long position in \(O\), includes 4 additional assets: a short position of \(\Delta_t\) units of the underlying asset, and another short position of \(x_i\) units of three benchmark vanilla options.
\[
\Pi(t) = O(t) - \Delta_t S_t - \sum_{i=1}^3 x_i C_i(t)
\]
We now show that when volatility is flat but stochastic, and the options are valued with the Black-Scholes formula, we can still have a dynamic perfect hedge, with a proper choice of the replicating portfolio \(x_i, i=1, \ldots, 3\) to cancel model risk.
The change in portfolio value over a small time interval \(dt\) is:
\[
d\Pi(t) = dO(t) - \Delta_t dS_t -\sum_{i=1}^3 x_i dC_i(t)
\]
An extended version of Ito's lemma, were terms in \(dS_td_t, dtd\sigma_t\) and \((dt)^2\) vanish, is given below:
\begin{align}
dO(t) &= \frac{\partial O}{\partial t} dt + \frac{\partial O}{\partial S} dS_t + \frac{\partial O}{\partial \sigma} d\sigma_t \\
& + \frac{\partial^2 O}{\partial S^2} (dS_t)^2 + \frac{\partial^2 O}{\partial \sigma^2} (d\sigma_t)^2 + \frac{\partial^2 O}{\partial S \partial \sigma} dS_t d\sigma_t
\end{align}
The corresponding change in portfolio \(\Pi\) is
\begin{align}
d\Pi & = \left[ \frac{\partial O}{\partial t} - \sum_i x_i \frac{\partial C_i}{\partial t} \right] dt \\
& + \left[ \frac{\partial O}{\partial S} - \Delta_t - \sum_i x_i \frac{\partial C_i}{\partial S} \right] dS_t \\
& + \left[ \frac{\partial O}{\partial \sigma} - \sum_i x_i \frac{\partial C_i}{\partial \sigma} \right] d\sigma_t \\
& + \frac{1}{2} \left[ \frac{\partial^2 O}{\partial S^2} - \sum_i x_i \frac{\partial^2 C_i}{\partial S^2} \right] (dS_t)^2 \\
& + \frac{1}{2} \left[ \frac{\partial^2 O}{\partial \sigma^2} - \sum_i x_i \frac{\partial^2 C_i}{\partial \sigma^2} \right] (d\sigma_t)^2 \\
& + \left[ \frac{\partial^2 O}{\partial S \partial \sigma} - \sum_i x_i \frac{\partial^2 C_i}{\partial S \partial \sigma} \right] dS_t d\sigma_t
\end{align}
We calculate \((dS_t)^2\), retaining the first order terms:
\begin{align}
(dS_t)^2 &= (rS_tdt + \sigma S_tdW_t) (rS_tdt + \sigma S_tdW_t) \\
&= \sigma^2S_t^2(dW)^2 \\
&= \sigma_t^2 S_t^2 dt
\end{align}
We also choose \(\Delta_t\) and \(x_i\) to zero out the terms
\(dS_t, d\sigma_t, (d\sigma_t)^2\) and \(dS_t d\sigma_t\). We are left with:
\[
d\Pi = \left[\left( \frac{\partial O}{\partial t} - \sum_{i=1}^3 x_i \frac{\partial C_i}{\partial t} \right) + \frac{1}{2} \sigma^2_t S^2_t \left(\frac{\partial^2 O}{\partial S^2_t} - 3\sum_{i=1}^3 x_i \frac{\partial^2 C_i}{\partial S_i^2} \right) \right] dt
\]
The hedged portfolio is thus riskless, and must earn the riskless rate:
\begin{equation}
d\Pi = r \left[ O(t) - -\Delta_t S_t - \sum_i x_i C_i(t) \right] dt
\label{eq:vv-1}
\end{equation}
In summary, we can still have a locally perfect hedge when volatility is
stochastic, as long as the prices \(O(t)\) and \(C_i(t)\) follow the
Black-Scholes equation.
\hypertarget{vanna-volga-option-pricing}{%
\section{Vanna-Volga option pricing}\label{vanna-volga-option-pricing}}
Up to now, we have assumed that option \(O\) as well as \(C_i\) were all priced according to the Black-Scholes model. In reality, the benchmark options have a quoted market price \(C_i^M(t)\) which is different from the flat volatility Black-Scholes price \(C_i^{BS}(t)\). We need to determine the price \(O^M(t)\) which is consistent with the market prices of the benchmark options. An approximate argument is presented below; see @Shkolnikov
for a rigorous treatment.
Discretize equation~\eqref{eq:vv-1} at time \(t=T-\delta t\), where \(T\) is the
option expiry, noting that, at expiry, the market prices and Black-Scholes prices of the options are identical. We get:
\begin{align}
O(T) - O(t) - \Delta_t (S_T - S_t) - \sum_i x_i \left[C_i(T)-C_i^{BS}(t) \right] = \\
r \left[O(t) - \sum_i x_i C^{BS}(t) - \Delta_t S_t \right] \delta t
\label{eq:vv-2}
\end{align}
By setting
\[
O(t) = O^{BS}(t) + \sum_i x_i \left[ C^M_i(t,K_i) - C^{BS}_i(t,K_i) \right]
\label{eq:vv-3}
\]
and substituting in \eqref{eq:vv-2}, we get
\begin{align}
O(T) &= O(t) + \Delta_t (S_T - S_0) \\
&+ \sum_i x_i \left[C_i(T) - C^M_i(t) \right] \\
&+ r \left(O(t) - \sum_i x_i C^M_i(t) - \Delta S_t \right) \delta t
\end{align}
In summary, if we have a wealth \(O(t)\) defined by~\eqref{eq:vv-3} at
time \(T-\delta t\), then we can replicate the payoff \(O(T)\) at expiry,
with a hedge at market price. The argument made on the interval
\([T-\delta t, T]\) can be applied by backward recursion for each time
interval until \(t=0\).
We have both a hedging strategy and a process for adjusting the price of
any derivative to account for the smile. let's now consider some
implementation details.
\hypertarget{implementation}{%
\section{Implementation}\label{implementation}}
The weights \(x_i\) are obtained by solving the system of linear
equations:
\begin{align}
\frac{\partial O}{\partial \sigma} &= \sum_i x_i \frac{\partial C_i}{\partial \sigma} \\
\frac{\partial^2 O}{\partial \sigma^2} &= \sum_i x_i \frac{\partial^2 C_i}{\partial \sigma^2} \\
\frac{\partial^2 O}{\partial S \partial \sigma} &= \sum_i x_i \frac{\partial^2 C_i}{\partial S \partial \sigma}
\end{align}
or,
\begin{equation}
b = Ax
\label{eq:A-matrix}
\end{equation}
Since the result of the previous section holds for any derivative that
verifies the Black-Scholes equation, we can choose the benchmark
securities \(C_i\) as we see fit.
To simplify notation, we denote \(C(K), P(K)\) the call
and put of strike \(K\), maturity \(T\).
A popular set of benchmark securities, commonly used in the FX market, is
in fact a set of benchmark portfolios:
\begin{itemize}
\item
An at-the-money straddle: \[C_1 = C(S) + P(S)\]
\item
A ``risk reversal'', traditionally defined as
\[C_2 = P(K_1) - C(K_2)\] with \(K_1\) and \(K_2\) chosen so that the
options have a Delta of .25 in absolute value.
\item
A ``butterfly'', defined as
\[C_3 = \beta ( P(K_1) + C(K_2) ) -(P(S)+C(S))\] with \(\beta\)
determined to set the Vega of the butterfly to 0.
\end{itemize}
This system is popular because the benchmark securities are very liquid,
and because the resulting \(A\) matrix of \eqref{eq:A-matrix} is almost
diagonal, which allows an intuitive interpretation of the coefficients
\(x_i\).
To summarize, the calculation steps for pricing an option, taking the
smile cost into account, are as follows:
\begin{enumerate}
\def\labelenumi{\arabic{enumi}.}
\item
compute the risk indicators for the option \(O\) to be priced:
\[b = \begin{pmatrix}
\frac{\partial O}{\partial \sigma} \\
\frac{\partial^2 O}{\partial \sigma^2} \\
\frac{\partial^2 O}{\partial \sigma \partial S}
\end{pmatrix}\]
\item
compute the A matrix \[A =
\begin{pmatrix}
\frac{\partial C_1}{\partial \sigma} & \ldots & \frac{\partial C_3}{\partial \sigma}\\
\frac{\partial^2 C_1}{\partial \sigma^2} & \ldots & \frac{\partial^2 C_3}{\partial \sigma^2} \\
\frac{\partial^2 C_1}{\partial \sigma \partial S}
& \ldots & \frac{\partial^2 C_3}{\partial \sigma \partial S}
\end{pmatrix}\]
\item
solve for \(x\): \[b = Ax\]
\item
the corrected price for \(O\) is:
\[O^M(t,K) = O^{BS}(t,K) + \sum_{i=2}^3 x_i \left( C_i^M(t) - C_i^{BS}(t) \right)
\label{eq:vv-5}\]
where \(C^M_i(t)\) is the market price and
\(C^{BS}_i(t)\) the Black-Scholes price (i.e.~with flat volatility).
\end{enumerate}
The term in \(x_1\) is omitted in \eqref{eq:vv-5} since, by definition,
the Black-Scholes price and market price of an ATM straddle are
identical.
Neglecting the off diagonal terms in \(A\), a simplified procedure is to
estimate \(x_i\) by:
\begin{align}
x_2 &=& \frac{\frac{\partial^2 O}{\partial \sigma^2}}{\frac{\partial^2 C_2}{\partial \sigma^2}} \\
x_3 &=& \frac{\frac{\partial^2 O}{\partial \sigma \partial S}}{\frac{\partial^2 C_3}{\partial \sigma \partial S}}
\end{align}
\hypertarget{volatility-interpolation}{%
\subsection{Volatility Interpolation}\label{volatility-interpolation}}
The simplest use of this method is volatility interpolation. Given the ATM
volatility and at two other strikes, we want to determine the volatility
at an arbitrary strike \(K\).
The process is illustrated below. The volatility of the three benchmark
instruments is provided in
Table~\ref{tab:vv-10} for European options with maturity \(T=1\) year.
Interest rate is set to 0 for simplicity.
\label{tab:vv-10}Volatility of benchmark instruments
Strike
Vol
80
0.320
100
0.300
120
0.315
\begin{Shaded}
\begin{Highlighting}[]
\NormalTok{ T }\OtherTok{\textless{}{-}} \DecValTok{1}
\NormalTok{ Spot }\OtherTok{\textless{}{-}} \DecValTok{100}
\NormalTok{ r }\OtherTok{\textless{}{-}} \DecValTok{0}
\NormalTok{ b }\OtherTok{\textless{}{-}} \DecValTok{0}
\NormalTok{ eps }\OtherTok{\textless{}{-}}\NormalTok{ .}\DecValTok{001}
\NormalTok{ sigma }\OtherTok{\textless{}{-}}\NormalTok{ .}\DecValTok{3}
\CommentTok{\# Benchmark data: (strike, volatility)}
\NormalTok{ VolData }\OtherTok{\textless{}{-}} \FunctionTok{list}\NormalTok{(}\FunctionTok{c}\NormalTok{(}\DecValTok{80}\NormalTok{, .}\DecValTok{32}\NormalTok{), }\FunctionTok{c}\NormalTok{(}\DecValTok{100}\NormalTok{, .}\DecValTok{30}\NormalTok{), }\FunctionTok{c}\NormalTok{(}\DecValTok{120}\NormalTok{, .}\DecValTok{315}\NormalTok{))}
\end{Highlighting}
\end{Shaded}
Define an array of pricing functions for the three benchmark
instruments:
\begin{Shaded}
\begin{Highlighting}[]
\NormalTok{C }\OtherTok{\textless{}{-}} \FunctionTok{c}\NormalTok{(}\ControlFlowTok{function}\NormalTok{(}\AttributeTok{vol =}\NormalTok{ sigma, }\AttributeTok{spot =}\NormalTok{ Spot) }\FunctionTok{GBSOption}\NormalTok{(}\AttributeTok{TypeFlag =} \StringTok{"c"}\NormalTok{,}
\AttributeTok{S =}\NormalTok{ spot, }\AttributeTok{X =}\NormalTok{ VolData[[}\DecValTok{1}\NormalTok{]][}\DecValTok{1}\NormalTok{], }\AttributeTok{Time =}\NormalTok{ T, }\AttributeTok{r =}\NormalTok{ r, }\AttributeTok{b =}\NormalTok{ b, }\AttributeTok{sigma =}\NormalTok{ vol)}\SpecialCharTok{@}\NormalTok{price,}
\ControlFlowTok{function}\NormalTok{(}\AttributeTok{vol =}\NormalTok{ sigma, }\AttributeTok{spot =}\NormalTok{ Spot) }\FunctionTok{GBSOption}\NormalTok{(}\AttributeTok{TypeFlag =} \StringTok{"c"}\NormalTok{,}
\AttributeTok{S =}\NormalTok{ spot, }\AttributeTok{X =}\NormalTok{ VolData[[}\DecValTok{2}\NormalTok{]][}\DecValTok{1}\NormalTok{], }\AttributeTok{Time =}\NormalTok{ T, }\AttributeTok{r =}\NormalTok{ r, }\AttributeTok{b =}\NormalTok{ b,}
\AttributeTok{sigma =}\NormalTok{ vol)}\SpecialCharTok{@}\NormalTok{price, }\ControlFlowTok{function}\NormalTok{(}\AttributeTok{vol =}\NormalTok{ sigma, }\AttributeTok{spot =}\NormalTok{ Spot) }\FunctionTok{GBSOption}\NormalTok{(}\AttributeTok{TypeFlag =} \StringTok{"c"}\NormalTok{,}
\AttributeTok{S =}\NormalTok{ spot, }\AttributeTok{X =}\NormalTok{ VolData[[}\DecValTok{3}\NormalTok{]][}\DecValTok{1}\NormalTok{], }\AttributeTok{Time =}\NormalTok{ T, }\AttributeTok{r =}\NormalTok{ r, }\AttributeTok{b =}\NormalTok{ b,}
\AttributeTok{sigma =}\NormalTok{ vol)}\SpecialCharTok{@}\NormalTok{price)}
\end{Highlighting}
\end{Shaded}
Next, define utility functions to compute the risk indicators, all by
finite difference:
\begin{Shaded}
\begin{Highlighting}[]
\NormalTok{ Vega }\OtherTok{\textless{}{-}} \ControlFlowTok{function}\NormalTok{(f, vol, }\AttributeTok{spot=}\NormalTok{Spot) (}\FunctionTok{f}\NormalTok{(vol}\SpecialCharTok{+}\NormalTok{eps, spot)}\SpecialCharTok{{-}}\FunctionTok{f}\NormalTok{(vol}\SpecialCharTok{{-}}\NormalTok{eps, spot))}\SpecialCharTok{/}\NormalTok{(}\DecValTok{2}\SpecialCharTok{*}\NormalTok{eps)}
\NormalTok{ Vanna }\OtherTok{\textless{}{-}} \ControlFlowTok{function}\NormalTok{(f, vol, }\AttributeTok{spot=}\NormalTok{Spot) \{}
\NormalTok{ (}\FunctionTok{Vega}\NormalTok{(f, vol, spot}\SpecialCharTok{+}\DecValTok{1}\NormalTok{)}\SpecialCharTok{{-}}\FunctionTok{Vega}\NormalTok{(f, vol, spot}\DecValTok{{-}1}\NormalTok{))}\SpecialCharTok{/}\DecValTok{2}
\NormalTok{ \}}
\NormalTok{ Volga }\OtherTok{\textless{}{-}} \ControlFlowTok{function}\NormalTok{(f, vol) \{}
\NormalTok{ (}\FunctionTok{Vega}\NormalTok{(f,vol}\SpecialCharTok{+}\NormalTok{eps)}\SpecialCharTok{{-}}\FunctionTok{Vega}\NormalTok{(f,vol}\SpecialCharTok{{-}}\NormalTok{eps))}\SpecialCharTok{/}\NormalTok{(eps)}
\NormalTok{ \}}
\end{Highlighting}
\end{Shaded}
Finally, the following function computes the Vanna-Volga adjustment to
the Black-Scholes price, and the corresponding implied volatility:
\begin{Shaded}
\begin{Highlighting}[]
\NormalTok{ VVVol }\OtherTok{\textless{}{-}} \ControlFlowTok{function}\NormalTok{(X) \{}
\NormalTok{ O }\OtherTok{\textless{}{-}} \ControlFlowTok{function}\NormalTok{(}\AttributeTok{vol=}\NormalTok{sigma, }\AttributeTok{spot=}\NormalTok{Spot) }\FunctionTok{GBSOption}\NormalTok{(}\AttributeTok{TypeFlag=}\StringTok{\textquotesingle{}c\textquotesingle{}}\NormalTok{, }\AttributeTok{S=}\NormalTok{spot,}
\AttributeTok{X=}\NormalTok{X, }\AttributeTok{Time=}\NormalTok{T, }\AttributeTok{r=}\NormalTok{r, }\AttributeTok{b=}\NormalTok{b, }\AttributeTok{sigma=}\NormalTok{vol)}\SpecialCharTok{@}\NormalTok{price}
\NormalTok{ TV.BS }\OtherTok{\textless{}{-}} \FunctionTok{O}\NormalTok{()}
\CommentTok{\# risk indicators for benchmark instruments}
\NormalTok{ B.vega }\OtherTok{\textless{}{-}} \FunctionTok{sapply}\NormalTok{(}\DecValTok{1}\SpecialCharTok{:}\DecValTok{3}\NormalTok{, }\ControlFlowTok{function}\NormalTok{(i) }\FunctionTok{Vega}\NormalTok{(C[[i]], sigma))}
\NormalTok{ B.vanna }\OtherTok{\textless{}{-}} \FunctionTok{sapply}\NormalTok{(}\DecValTok{1}\SpecialCharTok{:}\DecValTok{3}\NormalTok{, }\ControlFlowTok{function}\NormalTok{(i) }\FunctionTok{Vanna}\NormalTok{(C[[i]], sigma))}
\NormalTok{ B.volga }\OtherTok{\textless{}{-}} \FunctionTok{sapply}\NormalTok{(}\DecValTok{1}\SpecialCharTok{:}\DecValTok{3}\NormalTok{, }\ControlFlowTok{function}\NormalTok{(i) }\FunctionTok{Volga}\NormalTok{(C[[i]], sigma))}
\CommentTok{\# risk indicators for new option}
\NormalTok{ O.vega }\OtherTok{\textless{}{-}} \FunctionTok{Vega}\NormalTok{(O, sigma)}
\NormalTok{ O.vanna }\OtherTok{\textless{}{-}} \FunctionTok{Vanna}\NormalTok{(O, sigma)}
\NormalTok{ O.volga }\OtherTok{\textless{}{-}} \FunctionTok{Volga}\NormalTok{(O, sigma)}
\CommentTok{\# Benchmark costs}
\NormalTok{ B.cost }\OtherTok{\textless{}{-}} \FunctionTok{sapply}\NormalTok{(}\DecValTok{1}\SpecialCharTok{:}\DecValTok{3}\NormalTok{, }\ControlFlowTok{function}\NormalTok{(i) C[[i]](VolData[[i]][}\DecValTok{2}\NormalTok{]) }\SpecialCharTok{{-}}\NormalTok{ C[[i]](sigma))}
\CommentTok{\# calculation of price adjustment}
\NormalTok{ A }\OtherTok{\textless{}{-}} \FunctionTok{t}\NormalTok{(}\FunctionTok{matrix}\NormalTok{(}\FunctionTok{c}\NormalTok{(B.vega, B.vanna, B.volga), }\AttributeTok{nrow=}\DecValTok{3}\NormalTok{))}
\NormalTok{ x }\OtherTok{\textless{}{-}} \FunctionTok{matrix}\NormalTok{(}\FunctionTok{c}\NormalTok{(O.vega, O.vanna, O.volga), }\AttributeTok{nrow=}\DecValTok{3}\NormalTok{)}
\NormalTok{ w }\OtherTok{\textless{}{-}} \FunctionTok{solve}\NormalTok{(A, x)}
\NormalTok{ CF }\OtherTok{\textless{}{-}} \FunctionTok{t}\NormalTok{(w) }\SpecialCharTok{\%*\%} \FunctionTok{matrix}\NormalTok{(B.cost, }\AttributeTok{nrow=}\DecValTok{3}\NormalTok{)}
\CommentTok{\# implied volatility}
\NormalTok{ v }\OtherTok{\textless{}{-}} \FunctionTok{GBSVolatility}\NormalTok{(TV.BS}\SpecialCharTok{+}\NormalTok{CF, }\StringTok{\textquotesingle{}c\textquotesingle{}}\NormalTok{, Spot, X, T, r, b, }\DecValTok{1}\NormalTok{.e}\DecValTok{{-}5}\NormalTok{)}
\NormalTok{ v\}}
\end{Highlighting}
\end{Shaded}
We finally use the vanna-volga interpolating function to construct the
interpolated smile curve.
The result is shown in Figure~\ref{fig:vv-111}.
\begin{marginfigure}
\includegraphics{307-BS-VannaVolga_files/figure-latex/vv-111-1} \caption[Interpolated volatility curve]{Interpolated volatility curve. The three red dots represent the benchmark options.}\label{fig:vv-111}
\end{marginfigure}
\hypertarget{pricing-a-binary-option}{%
\subsection{Pricing a Binary Option}\label{pricing-a-binary-option}}
Consider a one-year binary call, struck at the money. Assume that the
smile is quadratic. Again, we assume a null interest rate for
simplicity.
This time, we use the traditional benchmark instruments of the FX
market: straddle, risk-reversal and butterfly, and compute the price of
the binary option, adjusted for the smile effect.
\begin{Shaded}
\begin{Highlighting}[]
\NormalTok{ T }\OtherTok{\textless{}{-}} \DecValTok{1}
\NormalTok{ Spot }\OtherTok{\textless{}{-}} \DecValTok{100}
\NormalTok{ r }\OtherTok{\textless{}{-}} \DecValTok{0}
\NormalTok{ d }\OtherTok{\textless{}{-}} \DecValTok{0}
\NormalTok{ b }\OtherTok{\textless{}{-}}\NormalTok{ r}\SpecialCharTok{{-}}\NormalTok{d}
\NormalTok{ sigma }\OtherTok{\textless{}{-}} \DecValTok{30}\SpecialCharTok{/}\DecValTok{100}
\NormalTok{ X }\OtherTok{\textless{}{-}} \FloatTok{110.50}
\CommentTok{\# smile function}
\NormalTok{ smile }\OtherTok{\textless{}{-}} \ControlFlowTok{function}\NormalTok{(X) (}\SpecialCharTok{{-}}\NormalTok{(}\DecValTok{0}\SpecialCharTok{/}\DecValTok{20}\NormalTok{)}\SpecialCharTok{*}\NormalTok{(X}\SpecialCharTok{{-}}\NormalTok{Spot) }\SpecialCharTok{+}\NormalTok{ (}\DecValTok{1}\SpecialCharTok{/}\DecValTok{300}\NormalTok{)}\SpecialCharTok{*}\NormalTok{(X}\SpecialCharTok{{-}}\NormalTok{Spot)}\SpecialCharTok{\^{}}\DecValTok{2}\NormalTok{)}\SpecialCharTok{/}\DecValTok{100}
\end{Highlighting}
\end{Shaded}
The strikes corresponding to a \(25\Delta\) call and put are computed by
inverting the formulae for the Delta of European options. Recall that
for a call, the Delta is given by:
\[\Delta = e^{-dT} N(d_1)\]
The strike corresponding to a \(25\Delta\) call is therefore:
\[K_{25\Delta} = S e^{- \left( \sigma \sqrt{T} N^{-1}(e^{dT}.25) -(r-d+\frac{\sigma^2}{2})T \right)}\]
\begin{Shaded}
\begin{Highlighting}[]
\CommentTok{\# strikes at +/{-} 25 deltas}
\NormalTok{ alpha }\OtherTok{\textless{}{-}} \SpecialCharTok{{-}}\FunctionTok{qnorm}\NormalTok{(.}\DecValTok{25}\SpecialCharTok{*}\FunctionTok{exp}\NormalTok{(d}\SpecialCharTok{*}\NormalTok{T))}
\NormalTok{ Kp }\OtherTok{\textless{}{-}}\NormalTok{ Spot}\SpecialCharTok{*}\FunctionTok{exp}\NormalTok{(}\SpecialCharTok{{-}}\NormalTok{alpha }\SpecialCharTok{*}\NormalTok{ sigma }\SpecialCharTok{*} \FunctionTok{sqrt}\NormalTok{(T)}\SpecialCharTok{+}\NormalTok{(r}\SpecialCharTok{{-}}\NormalTok{d}\SpecialCharTok{+}\NormalTok{(}\DecValTok{1}\SpecialCharTok{/}\DecValTok{2}\NormalTok{)}\SpecialCharTok{*}\NormalTok{sigma}\SpecialCharTok{\^{}}\DecValTok{2}\NormalTok{)}\SpecialCharTok{*}\NormalTok{T)}
\NormalTok{ Kc }\OtherTok{\textless{}{-}}\NormalTok{ Spot}\SpecialCharTok{*}\FunctionTok{exp}\NormalTok{(alpha }\SpecialCharTok{*}\NormalTok{ sigma }\SpecialCharTok{*} \FunctionTok{sqrt}\NormalTok{(T)}\SpecialCharTok{+}\NormalTok{(r}\SpecialCharTok{{-}}\NormalTok{d}\SpecialCharTok{+}\NormalTok{(}\DecValTok{1}\SpecialCharTok{/}\DecValTok{2}\NormalTok{)}\SpecialCharTok{*}\NormalTok{sigma}\SpecialCharTok{\^{}}\DecValTok{2}\NormalTok{)}\SpecialCharTok{*}\NormalTok{T)}
\end{Highlighting}
\end{Shaded}
Define a wrapper function to facilitate calculations on the binary
option:
\begin{Shaded}
\begin{Highlighting}[]
\NormalTok{ O }\OtherTok{\textless{}{-}} \ControlFlowTok{function}\NormalTok{(}\AttributeTok{vol=}\NormalTok{sigma, }\AttributeTok{spot=}\NormalTok{Spot) }\FunctionTok{CashOrNothingOption}\NormalTok{(}\AttributeTok{TypeFlag=}\StringTok{\textquotesingle{}c\textquotesingle{}}\NormalTok{, }\AttributeTok{S=}\NormalTok{spot,}
\AttributeTok{X=}\NormalTok{X, }\AttributeTok{K=}\DecValTok{100}\NormalTok{, }\AttributeTok{Time=}\NormalTok{T, }\AttributeTok{r=}\NormalTok{r, }\AttributeTok{b=}\NormalTok{b, }\AttributeTok{sigma=}\NormalTok{vol)}\SpecialCharTok{@}\NormalTok{price}
\end{Highlighting}
\end{Shaded}
The Black-Scholes value, using ATM volatility is:
\begin{Shaded}
\begin{Highlighting}[]
\CommentTok{\# Theoretical BS value}
\NormalTok{ TV.BS }\OtherTok{\textless{}{-}} \FunctionTok{O}\NormalTok{()}
\FunctionTok{print}\NormalTok{(}\FunctionTok{paste}\NormalTok{(}\StringTok{\textquotesingle{}BS value:\textquotesingle{}}\NormalTok{, }\FunctionTok{round}\NormalTok{(TV.BS,}\DecValTok{2}\NormalTok{)))}
\end{Highlighting}
\end{Shaded}
\begin{verbatim}
## [1] "BS value: 31.46"
\end{verbatim}
For comparison, we can approximate the binary option with a call spread,
giving a value of:
\begin{Shaded}
\begin{Highlighting}[]
\CommentTok{\# Replication value with call spread}
\NormalTok{ N }\OtherTok{\textless{}{-}} \DecValTok{1000}
\NormalTok{ TV.CS }\OtherTok{\textless{}{-}}\NormalTok{ N}\SpecialCharTok{*}\NormalTok{(}\FunctionTok{GBSOption}\NormalTok{(}\StringTok{\textquotesingle{}c\textquotesingle{}}\NormalTok{, Spot, X}\DecValTok{{-}100}\SpecialCharTok{/}\NormalTok{(}\DecValTok{2}\SpecialCharTok{*}\NormalTok{N), T, r, b, sigma}\SpecialCharTok{+}\FunctionTok{smile}\NormalTok{(X}\DecValTok{{-}100}\SpecialCharTok{/}\NormalTok{(}\DecValTok{2}\SpecialCharTok{*}\NormalTok{N)))}\SpecialCharTok{@}\NormalTok{price }\SpecialCharTok{{-}}
\FunctionTok{GBSOption}\NormalTok{(}\StringTok{\textquotesingle{}c\textquotesingle{}}\NormalTok{, Spot, X}\SpecialCharTok{+}\DecValTok{100}\SpecialCharTok{/}\NormalTok{(}\DecValTok{2}\SpecialCharTok{*}\NormalTok{N), T, r, b, sigma}\SpecialCharTok{+}\FunctionTok{smile}\NormalTok{(X}\SpecialCharTok{+}\DecValTok{100}\SpecialCharTok{/}\NormalTok{(}\DecValTok{2}\SpecialCharTok{*}\NormalTok{N)))}\SpecialCharTok{@}\NormalTok{price)}
\FunctionTok{print}\NormalTok{(}\FunctionTok{paste}\NormalTok{(}\StringTok{\textquotesingle{}Value, approximated by a call spread:\textquotesingle{}}\NormalTok{, }\FunctionTok{round}\NormalTok{(TV.BS,}\DecValTok{2}\NormalTok{)))}
\end{Highlighting}
\end{Shaded}
\begin{verbatim}
## [1] "Value, approximated by a call spread: 31.46"
\end{verbatim}
We next define the benchmark instruments:
\begin{Shaded}
\begin{Highlighting}[]
\CommentTok{\# Put}
\NormalTok{ P }\OtherTok{\textless{}{-}} \ControlFlowTok{function}\NormalTok{(}\AttributeTok{vol=}\NormalTok{sigma, }\AttributeTok{spot=}\NormalTok{Spot) }\FunctionTok{GBSOption}\NormalTok{(}\AttributeTok{TypeFlag=}\StringTok{\textquotesingle{}p\textquotesingle{}}\NormalTok{, }\AttributeTok{S=}\NormalTok{spot, }\AttributeTok{X=}\NormalTok{Kp,}
\AttributeTok{Time=}\NormalTok{T, }\AttributeTok{r=}\NormalTok{r, }\AttributeTok{b=}\NormalTok{b, }\AttributeTok{sigma=}\NormalTok{vol)}\SpecialCharTok{@}\NormalTok{price}
\CommentTok{\# Call}
\NormalTok{ C }\OtherTok{\textless{}{-}} \ControlFlowTok{function}\NormalTok{(}\AttributeTok{vol=}\NormalTok{sigma, }\AttributeTok{spot=}\NormalTok{Spot) }\FunctionTok{GBSOption}\NormalTok{(}\AttributeTok{TypeFlag=}\StringTok{\textquotesingle{}c\textquotesingle{}}\NormalTok{, }\AttributeTok{S=}\NormalTok{spot, }\AttributeTok{X=}\NormalTok{Kc,}
\AttributeTok{Time=}\NormalTok{T, }\AttributeTok{r=}\NormalTok{r, }\AttributeTok{b=}\NormalTok{b, }\AttributeTok{sigma=}\NormalTok{vol)}\SpecialCharTok{@}\NormalTok{price}
\CommentTok{\# Straddle}
\NormalTok{ S }\OtherTok{\textless{}{-}} \ControlFlowTok{function}\NormalTok{(}\AttributeTok{vol=}\NormalTok{sigma, }\AttributeTok{spot=}\NormalTok{Spot) \{}
\FunctionTok{GBSOption}\NormalTok{(}\AttributeTok{TypeFlag=}\StringTok{\textquotesingle{}c\textquotesingle{}}\NormalTok{, }\AttributeTok{S=}\NormalTok{spot, }\AttributeTok{X=}\NormalTok{Spot, }\AttributeTok{Time=}\NormalTok{T, }\AttributeTok{r=}\NormalTok{r, }\AttributeTok{b=}\NormalTok{b, }\AttributeTok{sigma=}\NormalTok{vol)}\SpecialCharTok{@}\NormalTok{price }\SpecialCharTok{+}
\FunctionTok{GBSOption}\NormalTok{(}\AttributeTok{TypeFlag=}\StringTok{\textquotesingle{}p\textquotesingle{}}\NormalTok{, }\AttributeTok{S=}\NormalTok{spot, }\AttributeTok{X=}\NormalTok{Spot, }\AttributeTok{Time=}\NormalTok{T, }\AttributeTok{r=}\NormalTok{r, }\AttributeTok{b=}\NormalTok{b, }\AttributeTok{sigma=}\NormalTok{vol)}\SpecialCharTok{@}\NormalTok{price}
\NormalTok{ \}}
\CommentTok{\# Risk Reversal}
\NormalTok{ RR }\OtherTok{\textless{}{-}} \ControlFlowTok{function}\NormalTok{(vol, }\AttributeTok{spot=}\NormalTok{Spot) \{}
\FunctionTok{P}\NormalTok{(vol, spot)}\SpecialCharTok{{-}}\FunctionTok{C}\NormalTok{(vol, spot)}
\NormalTok{ \}}
\CommentTok{\# Butterfly}
\NormalTok{ BF }\OtherTok{\textless{}{-}} \ControlFlowTok{function}\NormalTok{(vol, }\AttributeTok{spot=}\NormalTok{Spot, }\AttributeTok{beta=}\DecValTok{1}\NormalTok{) \{}
\NormalTok{ beta}\SpecialCharTok{*}\NormalTok{(}\FunctionTok{P}\NormalTok{(vol, spot)}\SpecialCharTok{+}\FunctionTok{C}\NormalTok{(vol, spot))}\SpecialCharTok{{-}}\FunctionTok{S}\NormalTok{(vol,spot)}
\NormalTok{ \}}
\end{Highlighting}
\end{Shaded}
The butterfly must be vega-neutral. This is obtained by solving for
\(\beta\):
\begin{Shaded}
\begin{Highlighting}[]
\NormalTok{ BF.V }\OtherTok{\textless{}{-}} \ControlFlowTok{function}\NormalTok{(vol, beta) \{}
\NormalTok{ (}\FunctionTok{BF}\NormalTok{(vol}\SpecialCharTok{+}\NormalTok{eps, }\AttributeTok{beta=}\NormalTok{beta)}\SpecialCharTok{{-}}\FunctionTok{BF}\NormalTok{(vol}\SpecialCharTok{{-}}\NormalTok{eps, }\AttributeTok{beta=}\NormalTok{beta))}\SpecialCharTok{/}\NormalTok{(}\DecValTok{2}\SpecialCharTok{*}\NormalTok{eps)}
\NormalTok{ \}}
\NormalTok{ beta }\OtherTok{\textless{}{-}} \FunctionTok{uniroot}\NormalTok{(}\ControlFlowTok{function}\NormalTok{(b) }\FunctionTok{BF.V}\NormalTok{(sigma, b), }\FunctionTok{c}\NormalTok{(}\DecValTok{1}\NormalTok{, }\FloatTok{1.5}\NormalTok{))}\SpecialCharTok{$}\NormalTok{root}
\end{Highlighting}
\end{Shaded}
Next, we compute the risk indicators for the binary option:
\begin{Shaded}
\begin{Highlighting}[]
\NormalTok{ O.vega }\OtherTok{\textless{}{-}} \FunctionTok{Vega}\NormalTok{(O, sigma)}
\NormalTok{ O.vanna }\OtherTok{\textless{}{-}} \FunctionTok{Vanna}\NormalTok{(O, sigma)}
\NormalTok{ O.volga }\OtherTok{\textless{}{-}} \FunctionTok{Volga}\NormalTok{(O, sigma)}
\end{Highlighting}
\end{Shaded}
and for the benchmark instruments:
\begin{Shaded}
\begin{Highlighting}[]
\NormalTok{ S.vega }\OtherTok{\textless{}{-}} \FunctionTok{Vega}\NormalTok{(S, sigma)}
\NormalTok{ S.vanna }\OtherTok{\textless{}{-}} \FunctionTok{Vanna}\NormalTok{(S, sigma)}
\NormalTok{ S.volga }\OtherTok{\textless{}{-}} \FunctionTok{Volga}\NormalTok{(S, sigma)}
\NormalTok{ RR.vega }\OtherTok{\textless{}{-}} \FunctionTok{Vega}\NormalTok{(RR, sigma)}
\NormalTok{ RR.vanna }\OtherTok{\textless{}{-}} \FunctionTok{Vanna}\NormalTok{(RR, sigma)}
\NormalTok{ RR.volga }\OtherTok{\textless{}{-}} \FunctionTok{Volga}\NormalTok{(RR, sigma)}
\NormalTok{ BF.vega }\OtherTok{\textless{}{-}} \DecValTok{0}
\NormalTok{ BF.vanna }\OtherTok{\textless{}{-}} \FunctionTok{Vanna}\NormalTok{(BF, sigma)}
\NormalTok{ BF.volga }\OtherTok{\textless{}{-}} \FunctionTok{Volga}\NormalTok{(BF, sigma)}
\end{Highlighting}
\end{Shaded}
By definition the smile cost of the straddle is zero, since it is priced
with ATM volatility. For the other two benchmark instruments, the smile
cost is the difference between the price with the smile effect and the
price at the ATM volatility:
\begin{Shaded}
\begin{Highlighting}[]
\CommentTok{\# RR and BF cost}
\NormalTok{ RR.cost }\OtherTok{\textless{}{-}}\NormalTok{ (}\FunctionTok{P}\NormalTok{(sigma}\SpecialCharTok{+}\FunctionTok{smile}\NormalTok{(Kp))}\SpecialCharTok{{-}}\FunctionTok{C}\NormalTok{(sigma}\SpecialCharTok{+}\FunctionTok{smile}\NormalTok{(Kc)))}\SpecialCharTok{{-}}\NormalTok{(}\FunctionTok{P}\NormalTok{(sigma)}\SpecialCharTok{{-}}\FunctionTok{C}\NormalTok{(sigma))}
\NormalTok{ BF.cost }\OtherTok{\textless{}{-}}\NormalTok{ beta}\SpecialCharTok{*}\NormalTok{(}\FunctionTok{P}\NormalTok{(sigma}\SpecialCharTok{+}\FunctionTok{smile}\NormalTok{(Kp))}\SpecialCharTok{+}\FunctionTok{C}\NormalTok{(sigma}\SpecialCharTok{+}\FunctionTok{smile}\NormalTok{(Kc)))}\SpecialCharTok{{-}}\NormalTok{ beta}\SpecialCharTok{*}\NormalTok{(}\FunctionTok{P}\NormalTok{(sigma)}\SpecialCharTok{+}\FunctionTok{C}\NormalTok{(sigma))}
\end{Highlighting}
\end{Shaded}
We can now compute the price correction for the binary option. First the
approximate method, ignoring the off-diagonal terms in matrix \(A\):
\begin{Shaded}
\begin{Highlighting}[]
\CommentTok{\# approximate method}
\NormalTok{ CA }\OtherTok{\textless{}{-}}\NormalTok{ RR.cost }\SpecialCharTok{*}\NormalTok{ (O.vanna}\SpecialCharTok{/}\NormalTok{RR.vanna) }\SpecialCharTok{+}\NormalTok{ BF.cost}\SpecialCharTok{*}\NormalTok{(O.volga}\SpecialCharTok{/}\NormalTok{BF.volga)}
\end{Highlighting}
\end{Shaded}
then the more accurate method, solving the \(3\times3\) linear system:
\begin{Shaded}
\begin{Highlighting}[]
\CommentTok{\# full calculation}
\NormalTok{ A }\OtherTok{\textless{}{-}} \FunctionTok{matrix}\NormalTok{(}\FunctionTok{c}\NormalTok{(S.vega, S.vanna, S.volga,}
\NormalTok{ RR.vega, RR.vanna, RR.volga,}
\NormalTok{ BF.vega, BF.vanna, BF.volga), }\AttributeTok{nrow=}\DecValTok{3}\NormalTok{)}
\NormalTok{ x }\OtherTok{\textless{}{-}} \FunctionTok{matrix}\NormalTok{(}\FunctionTok{c}\NormalTok{(O.vega, O.vanna, O.volga), }\AttributeTok{nrow=}\DecValTok{3}\NormalTok{)}
\NormalTok{ w }\OtherTok{\textless{}{-}} \FunctionTok{solve}\NormalTok{(A, x)}
\NormalTok{ CF }\OtherTok{\textless{}{-}} \FunctionTok{t}\NormalTok{(w) }\SpecialCharTok{\%*\%} \FunctionTok{matrix}\NormalTok{(}\FunctionTok{c}\NormalTok{(}\DecValTok{0}\NormalTok{, RR.cost, BF.cost), }\AttributeTok{nrow=}\DecValTok{3}\NormalTok{)}
\end{Highlighting}
\end{Shaded}
In summary, we get:
\begin{itemize}
\item
Black-Scholes price: \(31.46\)
\item
With approximate Vanna-Volga correction:
\(31.46 + (-4.95) = 26.51\)
\item
With acurate Vanna-Volga correction:
\(31.46 + (-3.5) = 27.96\)
\item
the approximation by a call spread is: \(28.79\)
\end{itemize}
It is worth noting that a naive calculation, where one would plug the
ATM volatility plus smile into the binary option pricing model would
yield a very inaccurate result:
\begin{Shaded}
\begin{Highlighting}[]
\NormalTok{ P.smile }\OtherTok{\textless{}{-}} \FunctionTok{O}\NormalTok{(}\AttributeTok{vol=}\NormalTok{sigma}\SpecialCharTok{+}\FunctionTok{smile}\NormalTok{(X))}
\end{Highlighting}
\end{Shaded}
which yields a value of \(31.54\). Figure~\ref{fig:vv-6}
compares the values of binary options for a range of strikes, computed
with four methods. :
\begin{figure}
\includegraphics{307-BS-VannaVolga_files/figure-latex/vv-6-1} \caption[Price of a digital call in the Black-Scholes framework]{Price of a digital call in the Black-Scholes framework: (1) vanilla Black-Scholes (2) Diagonal VV adjustment (3) Full VV adjustment (4) Approximation by a call spread}\label{fig:vv-6}
\end{figure}
\printindex
\end{document}