-
Notifications
You must be signed in to change notification settings - Fork 0
/
301-BlackScholes-1.Rmd
88 lines (60 loc) · 3.02 KB
/
301-BlackScholes-1.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
# Pricing with Black-Scholes
```{r setup, echo=FALSE, include=FALSE, cache=FALSE}
knitr::opts_chunk$set(
cache = TRUE,
dev.args = list(bg = "transparent"),
tidy=TRUE,
tidy.opts=list(width.cutoff=45)
)
```
`r tufte::newthought("Recall")` from the previous section that under the risk-neutral
probability, the discounted value is a martingale:
$$S_0 = e^{-rT} E^Q(S_T)$$
where $S_T$ is a log-normal variable that follows the process:
$$S_T = S_0 e^{(r-\frac{\sigma^2}{2})T + \sigma \sqrt{T}Y}$$
with $Y ~ N(0,1)$. In a seminal paper, F. Black and M. Scholes provided an arbitrage-free analytical expression for the value of a European option.
The value of any derivative is the discounted
expected payoff. For a call option, we have:
$$\begin{aligned}
c(S, 0) &=& e^{-rT} E^Q [ \left( S_0 e^{(r-\frac{\sigma^2}{2})T + \sigma \sqrt{T}Y}-K \right)^+ ] \\
&=& \frac{e^{-rT}}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \left( S_0 e^{(r-\frac{\sigma^2}{2})T + \sigma \sqrt{T}Y}-K \right)^+ e^{-x^2/2} dx\end{aligned}$$
Now compute the bounds of integration:
$$\begin{aligned}
& & S_0 e^{(r-\frac{\sigma^2}{2})T + \sigma \sqrt{T}x} \geq K \\
& <=> & e^{\sigma \sqrt{T} x} \geq \frac{K}{S_0} e^{-(r-\frac{\sigma^2}{2})T} \\
& <=> & x \geq \frac{1}{\sigma \sqrt{T}} \left( \ln(\frac{K}{S_0}) -(r-\frac{\sigma^2}{2})T \right)\end{aligned}$$
Let
$$T_1 = \frac{1}{\sigma \sqrt{T}} \left( \ln(\frac{K}{S_0}) -(r-\frac{\sigma^2}{2})T \right)$$
$$\begin{aligned}
c(S, 0) &=& \frac{e^{-rT}}{\sqrt{2\pi}} \int_{T_1}^{\infty} \left( S_0 e^{(r-\frac{\sigma^2}{2})T + \sigma \sqrt{T}x}-K \right) e^{-x^2/2} dx \\
&=& \frac{e^{-rT}}{\sqrt{2\pi}} \int_{T_1}^{\infty} S_0 e^{(r-\frac{\sigma^2}{2})T + \sigma \sqrt{T}x} e^{-x^2/2} dx - K \frac{e^{-rT}}{\sqrt{2\pi}} \int_{T_1}^{\infty} e^{-x^2/2} dx \\
&=& A - B\end{aligned}$$
$$B = K e^{-rT} (1-N(T_1))$$
Apply the change of variable $y = x-\sigma \sqrt{T}$ to get
$$\begin{aligned}
A &=& \frac{e^{-rT}}{\sqrt{2\pi}} \int_{T_1-\sigma \sqrt{T}}^{\infty} S_0 e^{-y^2/2} dy \\
&=& S_0 (1-N(T_1 - \sigma \sqrt{T}))\end{aligned}$$
where $N(x)$ is the cumulative normal distribution. Using the identity
$N(x)+N(-x)=1$, one gets the Black-Scholes formula in its standard form.
$$c(S,0) = S_0N(d_1) - Ke^{-rT}N(d_2) \,$$
where
$$\begin{aligned}
d_1 &=& \frac{\ln(S/K) + (r + \sigma^2/2)T}{\sigma\sqrt{T}} \\
d_2 &=& d_1 - \sigma\sqrt{T}.\end{aligned}$$
The value of the put can be obtained from the call-put parity
relationships.
Relationships Among Greeks
--------------------------
See standard text for derivation of greeks. Recall the Black-Scholes
pricing equation:
$$\frac{\partial f}{\partial t} + rS
\frac{\partial f}{\partial S} +
\frac{1}{2} \sigma^2 S^2
\frac{\partial^2 f}{\partial S^2} = rf$$
This is true of any derivative, and in particular of a delta hedged
portfolio. Set:
$$\begin{aligned}
\Theta &=& \frac{\partial f}{\partial t} \\
\Gamma &=& \frac{\partial^2 f}{\partial S^2}\end{aligned}$$
then,
$$\Theta + \frac{1}{2} \sigma^2 S^2 \Gamma = rf$$