forked from elleryqueenhomels/google_sketcher
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
61 lines (41 loc) · 1.53 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
import numpy as np
import tensorflow as tf
from model import Model
from utils import load_data
from tensorflow import keras
# for data loading
TEST_RATIO = 0.1
ITEMS_LIMIT_PER_LABEL = 60000
# for training
EPOCHS = 10
VERBOSE = 2
BATCH_SIZE = 256
VALIDATION_SPLIT = 0.1
def preprocess_data(X, img_size):
X = X.reshape(X.shape[0], img_size, img_size, 1)
X /= 255.0
return X.astype(np.float32)
def convert_label(Y, num_labels):
Y = keras.utils.to_categorical(Y, num_labels)
return Y
def train_model(data_dir, save_path, classes_file):
X_train, Y_train, X_test, Y_test, label_names = load_data(data_dir,
test_ratio=TEST_RATIO, items_limit_per_label=ITEMS_LIMIT_PER_LABEL)
img_size = int(np.sqrt(X_train.shape[1]))
num_labels = len(label_names)
X_train = preprocess_data(X_train, img_size)
Y_train = convert_label(Y_train, num_labels)
X_test = preprocess_data(X_test, img_size)
Y_test = convert_label(Y_test, num_labels)
model = Model(input_shape=X_train.shape[1:], output_labels_size=num_labels)
model.fit(X_train, Y_train, batch_size=BATCH_SIZE, epochs=EPOCHS,
validation_split=VALIDATION_SPLIT, verbose=VERBOSE)
model.save(save_path)
with open(classes_file, 'w') as f:
for item in label_names:
f.write('%s\n' % item)
train_score = model.score(X_train, Y_train)
test_score = model.score(X_test, Y_test)
print('Train accuracy: %.2f%%' % (train_score[1] * 100))
print('Test accuracy: %.2f%%' % (test_score[1] * 100))
return model