-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathreferences.html
421 lines (380 loc) · 26.3 KB
/
references.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
<!DOCTYPE html>
<html lang="" xml:lang="">
<head>
<meta charset="utf-8" />
<meta http-equiv="X-UA-Compatible" content="IE=edge" />
<title>References | Network analysis approach using morphological profiling of chemical perturbation</title>
<meta name="description" content="Exploring the intersection of graph representation learning and cell profiling" />
<meta name="generator" content="bookdown 0.33 and GitBook 2.6.7" />
<meta property="og:title" content="References | Network analysis approach using morphological profiling of chemical perturbation" />
<meta property="og:type" content="book" />
<meta property="og:description" content="Exploring the intersection of graph representation learning and cell profiling" />
<meta name="twitter:card" content="summary" />
<meta name="twitter:title" content="References | Network analysis approach using morphological profiling of chemical perturbation" />
<meta name="twitter:description" content="Exploring the intersection of graph representation learning and cell profiling" />
<meta name="author" content="Nima Chamyani" />
<meta name="date" content="2023-07-04" />
<meta name="viewport" content="width=device-width, initial-scale=1" />
<meta name="apple-mobile-web-app-capable" content="yes" />
<meta name="apple-mobile-web-app-status-bar-style" content="black" />
<link rel="prev" href="results.html"/>
<script src="libs/jquery-3.6.0/jquery-3.6.0.min.js"></script>
<script src="https://cdn.jsdelivr.net/npm/[email protected]/dist/fuse.min.js"></script>
<link href="libs/gitbook-2.6.7/css/style.css" rel="stylesheet" />
<link href="libs/gitbook-2.6.7/css/plugin-table.css" rel="stylesheet" />
<link href="libs/gitbook-2.6.7/css/plugin-bookdown.css" rel="stylesheet" />
<link href="libs/gitbook-2.6.7/css/plugin-highlight.css" rel="stylesheet" />
<link href="libs/gitbook-2.6.7/css/plugin-search.css" rel="stylesheet" />
<link href="libs/gitbook-2.6.7/css/plugin-fontsettings.css" rel="stylesheet" />
<link href="libs/gitbook-2.6.7/css/plugin-clipboard.css" rel="stylesheet" />
<link href="libs/anchor-sections-1.1.0/anchor-sections.css" rel="stylesheet" />
<link href="libs/anchor-sections-1.1.0/anchor-sections-hash.css" rel="stylesheet" />
<script src="libs/anchor-sections-1.1.0/anchor-sections.js"></script>
<style type="text/css">
pre > code.sourceCode { white-space: pre; position: relative; }
pre > code.sourceCode > span { display: inline-block; line-height: 1.25; }
pre > code.sourceCode > span:empty { height: 1.2em; }
.sourceCode { overflow: visible; }
code.sourceCode > span { color: inherit; text-decoration: inherit; }
pre.sourceCode { margin: 0; }
@media screen {
div.sourceCode { overflow: auto; }
}
@media print {
pre > code.sourceCode { white-space: pre-wrap; }
pre > code.sourceCode > span { text-indent: -5em; padding-left: 5em; }
}
pre.numberSource code
{ counter-reset: source-line 0; }
pre.numberSource code > span
{ position: relative; left: -4em; counter-increment: source-line; }
pre.numberSource code > span > a:first-child::before
{ content: counter(source-line);
position: relative; left: -1em; text-align: right; vertical-align: baseline;
border: none; display: inline-block;
-webkit-touch-callout: none; -webkit-user-select: none;
-khtml-user-select: none; -moz-user-select: none;
-ms-user-select: none; user-select: none;
padding: 0 4px; width: 4em;
color: #aaaaaa;
}
pre.numberSource { margin-left: 3em; border-left: 1px solid #aaaaaa; padding-left: 4px; }
div.sourceCode
{ }
@media screen {
pre > code.sourceCode > span > a:first-child::before { text-decoration: underline; }
}
code span.al { color: #ff0000; font-weight: bold; } /* Alert */
code span.an { color: #60a0b0; font-weight: bold; font-style: italic; } /* Annotation */
code span.at { color: #7d9029; } /* Attribute */
code span.bn { color: #40a070; } /* BaseN */
code span.bu { color: #008000; } /* BuiltIn */
code span.cf { color: #007020; font-weight: bold; } /* ControlFlow */
code span.ch { color: #4070a0; } /* Char */
code span.cn { color: #880000; } /* Constant */
code span.co { color: #60a0b0; font-style: italic; } /* Comment */
code span.cv { color: #60a0b0; font-weight: bold; font-style: italic; } /* CommentVar */
code span.do { color: #ba2121; font-style: italic; } /* Documentation */
code span.dt { color: #902000; } /* DataType */
code span.dv { color: #40a070; } /* DecVal */
code span.er { color: #ff0000; font-weight: bold; } /* Error */
code span.ex { } /* Extension */
code span.fl { color: #40a070; } /* Float */
code span.fu { color: #06287e; } /* Function */
code span.im { color: #008000; font-weight: bold; } /* Import */
code span.in { color: #60a0b0; font-weight: bold; font-style: italic; } /* Information */
code span.kw { color: #007020; font-weight: bold; } /* Keyword */
code span.op { color: #666666; } /* Operator */
code span.ot { color: #007020; } /* Other */
code span.pp { color: #bc7a00; } /* Preprocessor */
code span.sc { color: #4070a0; } /* SpecialChar */
code span.ss { color: #bb6688; } /* SpecialString */
code span.st { color: #4070a0; } /* String */
code span.va { color: #19177c; } /* Variable */
code span.vs { color: #4070a0; } /* VerbatimString */
code span.wa { color: #60a0b0; font-weight: bold; font-style: italic; } /* Warning */
</style>
<style type="text/css">
/* Used with Pandoc 2.11+ new --citeproc when CSL is used */
div.csl-bib-body { }
div.csl-entry {
clear: both;
}
.hanging div.csl-entry {
margin-left:2em;
text-indent:-2em;
}
div.csl-left-margin {
min-width:2em;
float:left;
}
div.csl-right-inline {
margin-left:2em;
padding-left:1em;
}
div.csl-indent {
margin-left: 2em;
}
</style>
<link rel="stylesheet" href="style.css" type="text/css" />
</head>
<body>
<div class="book without-animation with-summary font-size-2 font-family-1" data-basepath=".">
<div class="book-summary">
<nav role="navigation">
<ul class="summary">
<li class="chapter" data-level="" data-path="index.html"><a href="index.html"><i class="fa fa-check"></i>Intersecting Graph Representation Learning and Cell Profiling: A Novel Approach to Analyzing Complex Biomedical Data</a>
<ul>
<li class="chapter" data-level="" data-path="index.html"><a href="index.html#aim"><i class="fa fa-check"></i>Aim</a></li>
<li class="chapter" data-level="" data-path="index.html"><a href="index.html#what-can-be-found-in-this-document"><i class="fa fa-check"></i>What can be found in this document?</a></li>
</ul></li>
<li class="chapter" data-level="1" data-path="intro.html"><a href="intro.html"><i class="fa fa-check"></i><b>1</b> Introduction</a>
<ul>
<li class="chapter" data-level="1.1" data-path="intro.html"><a href="intro.html#graphs"><i class="fa fa-check"></i><b>1.1</b> Graphs</a></li>
<li class="chapter" data-level="1.2" data-path="intro.html"><a href="intro.html#graph-representation-learning"><i class="fa fa-check"></i><b>1.2</b> Graph representation learning</a></li>
<li class="chapter" data-level="1.3" data-path="intro.html"><a href="intro.html#cell-profiling"><i class="fa fa-check"></i><b>1.3</b> Cell profiling</a></li>
</ul></li>
<li class="chapter" data-level="2" data-path="methods.html"><a href="methods.html"><i class="fa fa-check"></i><b>2</b> Methods and Materials</a>
<ul>
<li class="chapter" data-level="2.1" data-path="methods.html"><a href="methods.html#data-preprocessing"><i class="fa fa-check"></i><b>2.1</b> Data Preprocessing</a>
<ul>
<li class="chapter" data-level="2.1.1" data-path="methods.html"><a href="methods.html#covid-19-cell-profilling-data"><i class="fa fa-check"></i><b>2.1.1</b> COVID-19 Cell profilling Data</a>
<ul>
<li class="chapter" data-level="2.1.1.1" data-path="methods.html"><a href="methods.html#normalization"><i class="fa fa-check"></i><b>2.1.1.1</b> Normalization</a></li>
<li class="chapter" data-level="2.1.1.2" data-path="methods.html"><a href="methods.html#dimensionality-reduction"><i class="fa fa-check"></i><b>2.1.1.2</b> Dimensionality Reduction</a></li>
<li class="chapter" data-level="2.1.1.3" data-path="methods.html"><a href="methods.html#development-of-a-binary-classification-of-data"><i class="fa fa-check"></i><b>2.1.1.3</b> Development of a binary classification of data</a></li>
</ul></li>
<li class="chapter" data-level="2.1.2" data-path="methods.html"><a href="methods.html#compound-protein-and-pathway-data-aggregation"><i class="fa fa-check"></i><b>2.1.2</b> Compound, Protein and Pathway Data Aggregation</a></li>
<li class="chapter" data-level="2.1.3" data-path="methods.html"><a href="methods.html#featurizing-the-biomedical-entities"><i class="fa fa-check"></i><b>2.1.3</b> Featurizing the Biomedical Entities</a>
<ul>
<li class="chapter" data-level="2.1.3.1" data-path="methods.html"><a href="methods.html#featurizing-compounds"><i class="fa fa-check"></i><b>2.1.3.1</b> Featurizing Compounds</a></li>
<li class="chapter" data-level="2.1.3.2" data-path="methods.html"><a href="methods.html#featurizing-proteins"><i class="fa fa-check"></i><b>2.1.3.2</b> Featurizing Proteins</a></li>
<li class="chapter" data-level="2.1.3.3" data-path="methods.html"><a href="methods.html#featurizing-pathways"><i class="fa fa-check"></i><b>2.1.3.3</b> Featurizing Pathways</a></li>
</ul></li>
<li class="chapter" data-level="2.1.4" data-path="methods.html"><a href="methods.html#covid-19-bio-graph"><i class="fa fa-check"></i><b>2.1.4</b> COVID-19 Bio-Graph</a></li>
<li class="chapter" data-level="2.1.5" data-path="methods.html"><a href="methods.html#representing-chemical-molecules-as-graph"><i class="fa fa-check"></i><b>2.1.5</b> Representing Chemical Molecules as Graph</a></li>
</ul></li>
<li class="chapter" data-level="2.2" data-path="methods.html"><a href="methods.html#models"><i class="fa fa-check"></i><b>2.2</b> Models</a>
<ul>
<li class="chapter" data-level="2.2.1" data-path="methods.html"><a href="methods.html#graph-level-molecular-predictor-glmp"><i class="fa fa-check"></i><b>2.2.1</b> Graph-Level Molecular Predictor (GLMP)</a></li>
<li class="chapter" data-level="2.2.2" data-path="methods.html"><a href="methods.html#bio-graph-integrative-classifierregressor-biogicbiogir"><i class="fa fa-check"></i><b>2.2.2</b> Bio-Graph Integrative Classifier/Regressor (BioGIC/BioGIR)</a>
<ul>
<li class="chapter" data-level="2.2.2.1" data-path="methods.html"><a href="methods.html#classificationregression"><i class="fa fa-check"></i><b>2.2.2.1</b> Classification/Regression</a></li>
<li class="chapter" data-level="2.2.2.2" data-path="methods.html"><a href="methods.html#predicting-joint-effect-of-nodes-chemical-combination"><i class="fa fa-check"></i><b>2.2.2.2</b> Predicting joint effect of nodes (Chemical Combination)</a></li>
</ul></li>
<li class="chapter" data-level="2.2.3" data-path="methods.html"><a href="methods.html#optimized-molecular-graph-generator-omg"><i class="fa fa-check"></i><b>2.2.3</b> Optimized Molecular Graph Generator (OMG)</a></li>
</ul></li>
<li class="chapter" data-level="2.3" data-path="methods.html"><a href="methods.html#model-validation-and-optimization"><i class="fa fa-check"></i><b>2.3</b> Model Validation and Optimization</a></li>
<li class="chapter" data-level="2.4" data-path="methods.html"><a href="methods.html#model-enhancement"><i class="fa fa-check"></i><b>2.4</b> Model Enhancement</a></li>
<li class="chapter" data-level="2.5" data-path="methods.html"><a href="methods.html#data-acquisition-software-and-libraries"><i class="fa fa-check"></i><b>2.5</b> Data acquisition, software and libraries</a></li>
</ul></li>
<li class="chapter" data-level="3" data-path="results.html"><a href="results.html"><i class="fa fa-check"></i><b>3</b> Result and Discussion</a>
<ul>
<li class="chapter" data-level="3.1" data-path="results.html"><a href="results.html#regressionclassification-performance"><i class="fa fa-check"></i><b>3.1</b> Regression/Classification Performance</a></li>
<li class="chapter" data-level="3.2" data-path="results.html"><a href="results.html#covid-19-biograph-topology"><i class="fa fa-check"></i><b>3.2</b> COVID-19 BioGraph Topology</a></li>
<li class="chapter" data-level="3.3" data-path="results.html"><a href="results.html#combination-prediction"><i class="fa fa-check"></i><b>3.3</b> Combination Prediction</a></li>
<li class="chapter" data-level="3.4" data-path="results.html"><a href="results.html#molecule-generation"><i class="fa fa-check"></i><b>3.4</b> Molecule Generation</a></li>
</ul></li>
<li class="chapter" data-level="" data-path="references.html"><a href="references.html"><i class="fa fa-check"></i>References</a></li>
</ul>
</nav>
</div>
<div class="book-body">
<div class="body-inner">
<div class="book-header" role="navigation">
<h1>
<i class="fa fa-circle-o-notch fa-spin"></i><a href="./">Network analysis approach using morphological profiling of chemical perturbation</a>
</h1>
</div>
<div class="page-wrapper" tabindex="-1" role="main">
<div class="page-inner">
<section class="normal" id="section-">
<div id="references" class="section level1 unnumbered hasAnchor">
<h1>References<a href="references.html#references" class="anchor-section" aria-label="Anchor link to header"></a></h1>
<div id="refs" class="references csl-bib-body">
<div class="csl-entry">
<div class="csl-left-margin">[1] </div><div class="csl-right-inline">M. M. Li, K. Huang, and M. Zitnik, <span>“Graph representation learning in biomedicine,”</span> <em>arXiv preprint arXiv:2104.04883</em>, 2021. </div>
</div>
<div class="csl-entry">
<div class="csl-left-margin">[2] </div><div class="csl-right-inline">M. M. Li, K. Huang, and M. Zitnik, <span>“Graph representation learning in biomedicine and healthcare,”</span> <em>Nature Biomedical Engineering</em>, pp. 1–17, 2022. </div>
</div>
<div class="csl-entry">
<div class="csl-left-margin">[3] </div><div class="csl-right-inline">X. Xiong, B. Zhou, and Y. G. Wang, <span>“Graph representation learning for interactive biomolecule systems,”</span> <em>arXiv preprint arXiv:2304.02656</em>, 2023. </div>
</div>
<div class="csl-entry">
<div class="csl-left-margin">[4] </div><div class="csl-right-inline">N. Aulner, A. Danckaert, J. Ihm, D. Shum, and S. L. Shorte, <span>“Next-generation phenotypic screening in early drug discovery for infectious diseases,”</span> <em>Trends in parasitology</em>, vol. 35, no. 7, pp. 559–570, 2019. </div>
</div>
<div class="csl-entry">
<div class="csl-left-margin">[5] </div><div class="csl-right-inline">D. C. Swinney and J. A. Lee, <span>“Recent advances in phenotypic drug discovery,”</span> <em>F1000Research</em>, vol. 9, 2020. </div>
</div>
<div class="csl-entry">
<div class="csl-left-margin">[6] </div><div class="csl-right-inline">A.-L. Barabási, N. Gulbahce, and J. Loscalzo, <span>“Network medicine: A network-based approach to human disease,”</span> <em>Nature reviews genetics</em>, vol. 12, no. 1, pp. 56–68, 2011. </div>
</div>
<div class="csl-entry">
<div class="csl-left-margin">[7] </div><div class="csl-right-inline">R. M. Piro, <span>“Network medicine: Linking disorders,”</span> <em>Human genetics</em>, vol. 131, pp. 1811–1820, 2012. </div>
</div>
<div class="csl-entry">
<div class="csl-left-margin">[8] </div><div class="csl-right-inline">H.-C. Yi, Z.-H. You, D.-S. Huang, and C. K. Kwoh, <span>“Graph representation learning in bioinformatics: Trends, methods and applications,”</span> <em>Briefings in Bioinformatics</em>, vol. 23, no. 1, p. bbab340, 2022. </div>
</div>
<div class="csl-entry">
<div class="csl-left-margin">[9] </div><div class="csl-right-inline">Y.-H. Feng and S.-W. Zhang, <span>“Prediction of drug-drug interaction using an attention-based graph neural network on drug molecular graphs,”</span> <em>Molecules</em>, vol. 27, no. 9, p. 3004, 2022. </div>
</div>
<div class="csl-entry">
<div class="csl-left-margin">[10] </div><div class="csl-right-inline">T. Pawson and R. Linding, <span>“Network medicine,”</span> <em>FEBS letters</em>, vol. 582, no. 8, pp. 1266–1270, 2008. </div>
</div>
<div class="csl-entry">
<div class="csl-left-margin">[11] </div><div class="csl-right-inline">J. C. Caicedo <em>et al.</em>, <span>“Data-analysis strategies for image-based cell profiling,”</span> <em>Nature methods</em>, vol. 14, no. 9, pp. 849–863, 2017. </div>
</div>
<div class="csl-entry">
<div class="csl-left-margin">[12] </div><div class="csl-right-inline">F. Chen, Y.-C. Wang, B. Wang, and C.-C. J. Kuo, <span>“Graph representation learning: A survey,”</span> <em>APSIPA Transactions on Signal and Information Processing</em>, vol. 9, p. e15, 2020. </div>
</div>
<div class="csl-entry">
<div class="csl-left-margin">[13] </div><div class="csl-right-inline">B. Perozzi, R. Al-Rfou, and S. Skiena, <span>“Deepwalk: Online learning of social representations,”</span> in <em>Proceedings of the 20th ACM SIGKDD international conference on knowledge discovery and data mining</em>, 2014, pp. 701–710. </div>
</div>
<div class="csl-entry">
<div class="csl-left-margin">[14] </div><div class="csl-right-inline">A. Grover and J. Leskovec, <span>“node2vec: Scalable feature learning for networks,”</span> in <em>Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining</em>, 2016, pp. 855–864. </div>
</div>
<div class="csl-entry">
<div class="csl-left-margin">[15] </div><div class="csl-right-inline">W. W. Lo, S. Layeghy, M. Sarhan, M. Gallagher, and M. Portmann, <span>“E-graphsage: A graph neural network based intrusion detection system for iot,”</span> in <em>NOMS 2022-2022 IEEE/IFIP network operations and management symposium</em>, 2022, pp. 1–9. </div>
</div>
<div class="csl-entry">
<div class="csl-left-margin">[16] </div><div class="csl-right-inline">W. L. Hamilton, R. Ying, and J. Leskovec, <span>“Representation learning on graphs: Methods and applications,”</span> <em>arXiv preprint arXiv:1709.05584</em>, 2017. </div>
</div>
<div class="csl-entry">
<div class="csl-left-margin">[17] </div><div class="csl-right-inline">R. van den Berg, T. N. Kipf, and M. Welling, <span>“Graph convolutional matrix completion,”</span> <em>arXiv preprint arXiv:1706.02263</em>, 2017. </div>
</div>
<div class="csl-entry">
<div class="csl-left-margin">[18] </div><div class="csl-right-inline">J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl, <span>“Neural message passing for quantum chemistry,”</span> in <em>International conference on machine learning</em>, 2017, pp. 1263–1272. </div>
</div>
<div class="csl-entry">
<div class="csl-left-margin">[19] </div><div class="csl-right-inline">M. Defferrard, X. Bresson, and P. Vandergheynst, <span>“Convolutional neural networks on graphs with fast localized spectral filtering,”</span> <em>Advances in neural information processing systems</em>, vol. 29, 2016. </div>
</div>
<div class="csl-entry">
<div class="csl-left-margin">[20] </div><div class="csl-right-inline">P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Bengio, <span>“Graph attention networks,”</span> <em>arXiv preprint arXiv:1710.10903</em>, 2017. </div>
</div>
<div class="csl-entry">
<div class="csl-left-margin">[21] </div><div class="csl-right-inline">F. Monti, M. Bronstein, and X. Bresson, <span>“Geometric matrix completion with recurrent multi-graph neural networks,”</span> <em>Advances in neural information processing systems</em>, vol. 30, 2017. </div>
</div>
<div class="csl-entry">
<div class="csl-left-margin">[22] </div><div class="csl-right-inline">Z. Wang, J. Li, Z. Liu, and J. Tang, <span>“Text-enhanced representation learning for knowledge graph,”</span> in <em>Proceedings of international joint conference on artificial intelligent (IJCAI)</em>, 2016, pp. 4–17. </div>
</div>
<div class="csl-entry">
<div class="csl-left-margin">[23] </div><div class="csl-right-inline">T. N. Kipf and M. Welling, <span>“Semi-supervised classification with graph convolutional networks,”</span> <em>arXiv preprint arXiv:1609.02907</em>, 2016. </div>
</div>
<div class="csl-entry">
<div class="csl-left-margin">[24] </div><div class="csl-right-inline">S. Cao, W. Lu, and Q. Xu, <span>“Deep neural networks for learning graph representations,”</span> in <em>Proceedings of the AAAI conference on artificial intelligence</em>, 2016, vol. 30. </div>
</div>
<div class="csl-entry">
<div class="csl-left-margin">[25] </div><div class="csl-right-inline">A. Majumdar, <span>“Graph structured autoencoder,”</span> <em>Neural Networks</em>, vol. 106, pp. 271–280, 2018. </div>
</div>
<div class="csl-entry">
<div class="csl-left-margin">[26] </div><div class="csl-right-inline">M. Bernstein, V. De Silva, J. C. Langford, and J. B. Tenenbaum, <span>“Graph approximations to geodesics on embedded manifolds,”</span> Citeseer, 2000. </div>
</div>
<div class="csl-entry">
<div class="csl-left-margin">[27] </div><div class="csl-right-inline">H. Qu, L. Li, Z. Li, and J. Zheng, <span>“Supervised discriminant isomap with maximum margin graph regularization for dimensionality reduction,”</span> <em>Expert Systems with Applications</em>, vol. 180, p. 115055, 2021. </div>
</div>
<div class="csl-entry">
<div class="csl-left-margin">[28] </div><div class="csl-right-inline">C. Shi, M. Xu, Z. Zhu, W. Zhang, M. Zhang, and J. Tang, <span>“Graphaf: A flow-based autoregressive model for molecular graph generation,”</span> <em>arXiv preprint arXiv:2001.09382</em>, 2020. </div>
</div>
<div class="csl-entry">
<div class="csl-left-margin">[29] </div><div class="csl-right-inline">W. Jin, R. Barzilay, and T. Jaakkola, <span>“Junction tree variational autoencoder for molecular graph generation,”</span> in <em>International conference on machine learning</em>, 2018, pp. 2323–2332. </div>
</div>
<div class="csl-entry">
<div class="csl-left-margin">[30] </div><div class="csl-right-inline">J. You, R. Ying, X. Ren, W. Hamilton, and J. Leskovec, <span>“Graphrnn: Generating realistic graphs with deep auto-regressive models,”</span> in <em>International conference on machine learning</em>, 2018, pp. 5708–5717. </div>
</div>
<div class="csl-entry">
<div class="csl-left-margin">[31] </div><div class="csl-right-inline">J. Rietdijk, T. Aggarwal, P. Georgieva, M. Lapins, J. Carreras-Puigvert, and O. Spjuth, <span>“Morphological profiling of environmental chemicals enables efficient and untargeted exploration of combination effects,”</span> <em>Science of The Total Environment</em>, vol. 832, p. 155058, 2022. </div>
</div>
<div class="csl-entry">
<div class="csl-left-margin">[32] </div><div class="csl-right-inline">G. Tian, P. J. Harrison, A. P. Sreenivasan, J. Carreras-Puigvert, and O. Spjuth, <span>“Combining molecular and cell painting image data for mechanism of action prediction,”</span> <em>Artificial Intelligence in the Life Sciences</em>, vol. 3, p. 100060, 2023. </div>
</div>
<div class="csl-entry">
<div class="csl-left-margin">[33] </div><div class="csl-right-inline">A. Mullard, <span>“Machine learning brings cell imaging promises into focus,”</span> <em>Nature Reviews Drug Discovery</em>, vol. 18, no. 9, pp. 653–656, 2019. </div>
</div>
<div class="csl-entry">
<div class="csl-left-margin">[34] </div><div class="csl-right-inline">C. Scheeder, F. Heigwer, and M. Boutros, <span>“Machine learning and image-based profiling in drug discovery,”</span> <em>Current Opinion in Systems Biology</em>, vol. 10, pp. 43–52, 2018, doi: <a href="https://doi.org/10.1016/j.coisb.2018.05.004">https://doi.org/10.1016/j.coisb.2018.05.004</a>. [Online]. Available: <a href="https://www.sciencedirect.com/science/article/pii/S2452310018300027">https://www.sciencedirect.com/science/article/pii/S2452310018300027</a></div>
</div>
<div class="csl-entry">
<div class="csl-left-margin">[35] </div><div class="csl-right-inline">S. Kappal <em>et al.</em>, <span>“Data normalization using median median absolute deviation MMAD based z-score for robust predictions vs. Min–max normalization,”</span> <em>London Journal of Research in Science: Natural and Formal</em>, 2019. </div>
</div>
<div class="csl-entry">
<div class="csl-left-margin">[36] </div><div class="csl-right-inline">F.-Y. Sun, J. Hoffmann, V. Verma, and J. Tang, <span>“Infograph: Unsupervised and semi-supervised graph-level representation learning via mutual information maximization,”</span> <em>arXiv preprint arXiv:1908.01000</em>, 2019. </div>
</div>
<div class="csl-entry">
<div class="csl-left-margin">[37] </div><div class="csl-right-inline">Y. You, T. Chen, Y. Sui, T. Chen, Z. Wang, and Y. Shen, <span>“Graph contrastive learning with augmentations,”</span> <em>Advances in neural information processing systems</em>, vol. 33, pp. 5812–5823, 2020. </div>
</div>
</div>
</div>
</section>
</div>
</div>
</div>
<a href="results.html" class="navigation navigation-prev navigation-unique" aria-label="Previous page"><i class="fa fa-angle-left"></i></a>
</div>
</div>
<script src="libs/gitbook-2.6.7/js/app.min.js"></script>
<script src="libs/gitbook-2.6.7/js/clipboard.min.js"></script>
<script src="libs/gitbook-2.6.7/js/plugin-search.js"></script>
<script src="libs/gitbook-2.6.7/js/plugin-sharing.js"></script>
<script src="libs/gitbook-2.6.7/js/plugin-fontsettings.js"></script>
<script src="libs/gitbook-2.6.7/js/plugin-bookdown.js"></script>
<script src="libs/gitbook-2.6.7/js/jquery.highlight.js"></script>
<script src="libs/gitbook-2.6.7/js/plugin-clipboard.js"></script>
<script>
gitbook.require(["gitbook"], function(gitbook) {
gitbook.start({
"sharing": {
"github": false,
"facebook": true,
"twitter": true,
"linkedin": false,
"weibo": false,
"instapaper": false,
"vk": false,
"whatsapp": false,
"all": ["facebook", "twitter", "linkedin", "weibo", "instapaper"]
},
"fontsettings": {
"theme": "white",
"family": "sans",
"size": 2
},
"edit": null,
"history": {
"link": null,
"text": null
},
"view": {
"link": null,
"text": null
},
"download": ["_main.pdf", "_main.epub", "_main.mobi"],
"search": {
"engine": "fuse",
"options": null
},
"toc": {
"collapse": "subsection"
},
"toolbar": {
"position": "fixed"
}
});
});
</script>
<!-- dynamically load mathjax for compatibility with self-contained -->
<script>
(function () {
var script = document.createElement("script");
script.type = "text/javascript";
var src = "true";
if (src === "" || src === "true") src = "https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.9/latest.js?config=TeX-MML-AM_CHTML";
if (location.protocol !== "file:")
if (/^https?:/.test(src))
src = src.replace(/^https?:/, '');
script.src = src;
document.getElementsByTagName("head")[0].appendChild(script);
})();
</script>
</body>
</html>