-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathintro.html
453 lines (414 loc) · 37.1 KB
/
intro.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
<!DOCTYPE html>
<html lang="" xml:lang="">
<head>
<meta charset="utf-8" />
<meta http-equiv="X-UA-Compatible" content="IE=edge" />
<title>1 Introduction | Network analysis approach using morphological profiling of chemical perturbation</title>
<meta name="description" content="Exploring the intersection of graph representation learning and cell profiling" />
<meta name="generator" content="bookdown 0.33 and GitBook 2.6.7" />
<meta property="og:title" content="1 Introduction | Network analysis approach using morphological profiling of chemical perturbation" />
<meta property="og:type" content="book" />
<meta property="og:description" content="Exploring the intersection of graph representation learning and cell profiling" />
<meta name="twitter:card" content="summary" />
<meta name="twitter:title" content="1 Introduction | Network analysis approach using morphological profiling of chemical perturbation" />
<meta name="twitter:description" content="Exploring the intersection of graph representation learning and cell profiling" />
<meta name="author" content="Nima Chamyani" />
<meta name="date" content="2023-07-04" />
<meta name="viewport" content="width=device-width, initial-scale=1" />
<meta name="apple-mobile-web-app-capable" content="yes" />
<meta name="apple-mobile-web-app-status-bar-style" content="black" />
<link rel="prev" href="index.html"/>
<link rel="next" href="methods.html"/>
<script src="libs/jquery-3.6.0/jquery-3.6.0.min.js"></script>
<script src="https://cdn.jsdelivr.net/npm/[email protected]/dist/fuse.min.js"></script>
<link href="libs/gitbook-2.6.7/css/style.css" rel="stylesheet" />
<link href="libs/gitbook-2.6.7/css/plugin-table.css" rel="stylesheet" />
<link href="libs/gitbook-2.6.7/css/plugin-bookdown.css" rel="stylesheet" />
<link href="libs/gitbook-2.6.7/css/plugin-highlight.css" rel="stylesheet" />
<link href="libs/gitbook-2.6.7/css/plugin-search.css" rel="stylesheet" />
<link href="libs/gitbook-2.6.7/css/plugin-fontsettings.css" rel="stylesheet" />
<link href="libs/gitbook-2.6.7/css/plugin-clipboard.css" rel="stylesheet" />
<link href="libs/anchor-sections-1.1.0/anchor-sections.css" rel="stylesheet" />
<link href="libs/anchor-sections-1.1.0/anchor-sections-hash.css" rel="stylesheet" />
<script src="libs/anchor-sections-1.1.0/anchor-sections.js"></script>
<style type="text/css">
pre > code.sourceCode { white-space: pre; position: relative; }
pre > code.sourceCode > span { display: inline-block; line-height: 1.25; }
pre > code.sourceCode > span:empty { height: 1.2em; }
.sourceCode { overflow: visible; }
code.sourceCode > span { color: inherit; text-decoration: inherit; }
pre.sourceCode { margin: 0; }
@media screen {
div.sourceCode { overflow: auto; }
}
@media print {
pre > code.sourceCode { white-space: pre-wrap; }
pre > code.sourceCode > span { text-indent: -5em; padding-left: 5em; }
}
pre.numberSource code
{ counter-reset: source-line 0; }
pre.numberSource code > span
{ position: relative; left: -4em; counter-increment: source-line; }
pre.numberSource code > span > a:first-child::before
{ content: counter(source-line);
position: relative; left: -1em; text-align: right; vertical-align: baseline;
border: none; display: inline-block;
-webkit-touch-callout: none; -webkit-user-select: none;
-khtml-user-select: none; -moz-user-select: none;
-ms-user-select: none; user-select: none;
padding: 0 4px; width: 4em;
color: #aaaaaa;
}
pre.numberSource { margin-left: 3em; border-left: 1px solid #aaaaaa; padding-left: 4px; }
div.sourceCode
{ }
@media screen {
pre > code.sourceCode > span > a:first-child::before { text-decoration: underline; }
}
code span.al { color: #ff0000; font-weight: bold; } /* Alert */
code span.an { color: #60a0b0; font-weight: bold; font-style: italic; } /* Annotation */
code span.at { color: #7d9029; } /* Attribute */
code span.bn { color: #40a070; } /* BaseN */
code span.bu { color: #008000; } /* BuiltIn */
code span.cf { color: #007020; font-weight: bold; } /* ControlFlow */
code span.ch { color: #4070a0; } /* Char */
code span.cn { color: #880000; } /* Constant */
code span.co { color: #60a0b0; font-style: italic; } /* Comment */
code span.cv { color: #60a0b0; font-weight: bold; font-style: italic; } /* CommentVar */
code span.do { color: #ba2121; font-style: italic; } /* Documentation */
code span.dt { color: #902000; } /* DataType */
code span.dv { color: #40a070; } /* DecVal */
code span.er { color: #ff0000; font-weight: bold; } /* Error */
code span.ex { } /* Extension */
code span.fl { color: #40a070; } /* Float */
code span.fu { color: #06287e; } /* Function */
code span.im { color: #008000; font-weight: bold; } /* Import */
code span.in { color: #60a0b0; font-weight: bold; font-style: italic; } /* Information */
code span.kw { color: #007020; font-weight: bold; } /* Keyword */
code span.op { color: #666666; } /* Operator */
code span.ot { color: #007020; } /* Other */
code span.pp { color: #bc7a00; } /* Preprocessor */
code span.sc { color: #4070a0; } /* SpecialChar */
code span.ss { color: #bb6688; } /* SpecialString */
code span.st { color: #4070a0; } /* String */
code span.va { color: #19177c; } /* Variable */
code span.vs { color: #4070a0; } /* VerbatimString */
code span.wa { color: #60a0b0; font-weight: bold; font-style: italic; } /* Warning */
</style>
<style type="text/css">
/* Used with Pandoc 2.11+ new --citeproc when CSL is used */
div.csl-bib-body { }
div.csl-entry {
clear: both;
}
.hanging div.csl-entry {
margin-left:2em;
text-indent:-2em;
}
div.csl-left-margin {
min-width:2em;
float:left;
}
div.csl-right-inline {
margin-left:2em;
padding-left:1em;
}
div.csl-indent {
margin-left: 2em;
}
</style>
<link rel="stylesheet" href="style.css" type="text/css" />
</head>
<body>
<div class="book without-animation with-summary font-size-2 font-family-1" data-basepath=".">
<div class="book-summary">
<nav role="navigation">
<ul class="summary">
<li class="chapter" data-level="" data-path="index.html"><a href="index.html"><i class="fa fa-check"></i>Intersecting Graph Representation Learning and Cell Profiling: A Novel Approach to Analyzing Complex Biomedical Data</a>
<ul>
<li class="chapter" data-level="" data-path="index.html"><a href="index.html#aim"><i class="fa fa-check"></i>Aim</a></li>
<li class="chapter" data-level="" data-path="index.html"><a href="index.html#what-can-be-found-in-this-document"><i class="fa fa-check"></i>What can be found in this document?</a></li>
</ul></li>
<li class="chapter" data-level="1" data-path="intro.html"><a href="intro.html"><i class="fa fa-check"></i><b>1</b> Introduction</a>
<ul>
<li class="chapter" data-level="1.1" data-path="intro.html"><a href="intro.html#graphs"><i class="fa fa-check"></i><b>1.1</b> Graphs</a></li>
<li class="chapter" data-level="1.2" data-path="intro.html"><a href="intro.html#graph-representation-learning"><i class="fa fa-check"></i><b>1.2</b> Graph representation learning</a></li>
<li class="chapter" data-level="1.3" data-path="intro.html"><a href="intro.html#cell-profiling"><i class="fa fa-check"></i><b>1.3</b> Cell profiling</a></li>
</ul></li>
<li class="chapter" data-level="2" data-path="methods.html"><a href="methods.html"><i class="fa fa-check"></i><b>2</b> Methods and Materials</a>
<ul>
<li class="chapter" data-level="2.1" data-path="methods.html"><a href="methods.html#data-preprocessing"><i class="fa fa-check"></i><b>2.1</b> Data Preprocessing</a>
<ul>
<li class="chapter" data-level="2.1.1" data-path="methods.html"><a href="methods.html#covid-19-cell-profilling-data"><i class="fa fa-check"></i><b>2.1.1</b> COVID-19 Cell profilling Data</a>
<ul>
<li class="chapter" data-level="2.1.1.1" data-path="methods.html"><a href="methods.html#normalization"><i class="fa fa-check"></i><b>2.1.1.1</b> Normalization</a></li>
<li class="chapter" data-level="2.1.1.2" data-path="methods.html"><a href="methods.html#dimensionality-reduction"><i class="fa fa-check"></i><b>2.1.1.2</b> Dimensionality Reduction</a></li>
<li class="chapter" data-level="2.1.1.3" data-path="methods.html"><a href="methods.html#development-of-a-binary-classification-of-data"><i class="fa fa-check"></i><b>2.1.1.3</b> Development of a binary classification of data</a></li>
</ul></li>
<li class="chapter" data-level="2.1.2" data-path="methods.html"><a href="methods.html#compound-protein-and-pathway-data-aggregation"><i class="fa fa-check"></i><b>2.1.2</b> Compound, Protein and Pathway Data Aggregation</a></li>
<li class="chapter" data-level="2.1.3" data-path="methods.html"><a href="methods.html#featurizing-the-biomedical-entities"><i class="fa fa-check"></i><b>2.1.3</b> Featurizing the Biomedical Entities</a>
<ul>
<li class="chapter" data-level="2.1.3.1" data-path="methods.html"><a href="methods.html#featurizing-compounds"><i class="fa fa-check"></i><b>2.1.3.1</b> Featurizing Compounds</a></li>
<li class="chapter" data-level="2.1.3.2" data-path="methods.html"><a href="methods.html#featurizing-proteins"><i class="fa fa-check"></i><b>2.1.3.2</b> Featurizing Proteins</a></li>
<li class="chapter" data-level="2.1.3.3" data-path="methods.html"><a href="methods.html#featurizing-pathways"><i class="fa fa-check"></i><b>2.1.3.3</b> Featurizing Pathways</a></li>
</ul></li>
<li class="chapter" data-level="2.1.4" data-path="methods.html"><a href="methods.html#covid-19-bio-graph"><i class="fa fa-check"></i><b>2.1.4</b> COVID-19 Bio-Graph</a></li>
<li class="chapter" data-level="2.1.5" data-path="methods.html"><a href="methods.html#representing-chemical-molecules-as-graph"><i class="fa fa-check"></i><b>2.1.5</b> Representing Chemical Molecules as Graph</a></li>
</ul></li>
<li class="chapter" data-level="2.2" data-path="methods.html"><a href="methods.html#models"><i class="fa fa-check"></i><b>2.2</b> Models</a>
<ul>
<li class="chapter" data-level="2.2.1" data-path="methods.html"><a href="methods.html#graph-level-molecular-predictor-glmp"><i class="fa fa-check"></i><b>2.2.1</b> Graph-Level Molecular Predictor (GLMP)</a></li>
<li class="chapter" data-level="2.2.2" data-path="methods.html"><a href="methods.html#bio-graph-integrative-classifierregressor-biogicbiogir"><i class="fa fa-check"></i><b>2.2.2</b> Bio-Graph Integrative Classifier/Regressor (BioGIC/BioGIR)</a>
<ul>
<li class="chapter" data-level="2.2.2.1" data-path="methods.html"><a href="methods.html#classificationregression"><i class="fa fa-check"></i><b>2.2.2.1</b> Classification/Regression</a></li>
<li class="chapter" data-level="2.2.2.2" data-path="methods.html"><a href="methods.html#predicting-joint-effect-of-nodes-chemical-combination"><i class="fa fa-check"></i><b>2.2.2.2</b> Predicting joint effect of nodes (Chemical Combination)</a></li>
</ul></li>
<li class="chapter" data-level="2.2.3" data-path="methods.html"><a href="methods.html#optimized-molecular-graph-generator-omg"><i class="fa fa-check"></i><b>2.2.3</b> Optimized Molecular Graph Generator (OMG)</a></li>
</ul></li>
<li class="chapter" data-level="2.3" data-path="methods.html"><a href="methods.html#model-validation-and-optimization"><i class="fa fa-check"></i><b>2.3</b> Model Validation and Optimization</a></li>
<li class="chapter" data-level="2.4" data-path="methods.html"><a href="methods.html#model-enhancement"><i class="fa fa-check"></i><b>2.4</b> Model Enhancement</a></li>
<li class="chapter" data-level="2.5" data-path="methods.html"><a href="methods.html#data-acquisition-software-and-libraries"><i class="fa fa-check"></i><b>2.5</b> Data acquisition, software and libraries</a></li>
</ul></li>
<li class="chapter" data-level="3" data-path="results.html"><a href="results.html"><i class="fa fa-check"></i><b>3</b> Result and Discussion</a>
<ul>
<li class="chapter" data-level="3.1" data-path="results.html"><a href="results.html#regressionclassification-performance"><i class="fa fa-check"></i><b>3.1</b> Regression/Classification Performance</a></li>
<li class="chapter" data-level="3.2" data-path="results.html"><a href="results.html#covid-19-biograph-topology"><i class="fa fa-check"></i><b>3.2</b> COVID-19 BioGraph Topology</a></li>
<li class="chapter" data-level="3.3" data-path="results.html"><a href="results.html#combination-prediction"><i class="fa fa-check"></i><b>3.3</b> Combination Prediction</a></li>
<li class="chapter" data-level="3.4" data-path="results.html"><a href="results.html#molecule-generation"><i class="fa fa-check"></i><b>3.4</b> Molecule Generation</a></li>
</ul></li>
<li class="chapter" data-level="" data-path="references.html"><a href="references.html"><i class="fa fa-check"></i>References</a></li>
</ul>
</nav>
</div>
<div class="book-body">
<div class="body-inner">
<div class="book-header" role="navigation">
<h1>
<i class="fa fa-circle-o-notch fa-spin"></i><a href="./">Network analysis approach using morphological profiling of chemical perturbation</a>
</h1>
</div>
<div class="page-wrapper" tabindex="-1" role="main">
<div class="page-inner">
<section class="normal" id="section-">
<div id="intro" class="section level1 hasAnchor" number="1">
<h1><span class="header-section-number">1</span> Introduction<a href="intro.html#intro" class="anchor-section" aria-label="Anchor link to header"></a></h1>
<p>In recent years, graph representation learning and cell profiling have emerged as potent tools in understanding biological systems and identifying novel therapeutic strategies <span class="citation"><a href="#ref-li2021graph">[1]</a>–<a href="#ref-swinney2020recent">[5]</a></span>. By amalgamating these state-of-the-art technologies, we can harness the rich, high-dimensional data within the framework of network medicine, providing crucial insights into the relationships amongst chemical compounds, diseases, proteins, and genes. This research focuses on the applicability of graph representation learning in analyzing cell profiling data to uncover latent correlations instrumental in propelling drug discovery.</p>
<p>The concept of graphs or networks has become a cornerstone in biomedical research, providing a platform to represent complex biological systems and associations <span class="citation"><a href="#ref-barabasi2011network">[6]</a>, <a href="#ref-piro2012network">[7]</a></span>. They can encapsulate the intricate relationships among various entities, such as molecular interactions, protein-protein relations, and gene-disease connections. The vast expanse of biological data and associations they hold make them a compelling platform for applying deep learning techniques, specifically graph representation learning. The potential of graphs extends beyond the realm of biology, as they allow the extrapolation of insights from other complex networks, such as the World Wide Web and social sciences <span class="citation"><a href="#ref-li2022graph">[2]</a></span>.</p>
<p>Graphs map out different biological entities to a set of nodes and links, with nodes representing components of a biological system and links signifying the interactions between these components. To effectively understand these networks, graph representation learning has emerged as a powerful approach <span class="citation"><a href="#ref-yi2022graph">[8]</a>, <a href="#ref-feng2022prediction">[9]</a></span>. It involves the transformation of nodes and edges into a lower vectorial space, known as embedding. Once the complex structure of the graph is transposed into this lower space, various machine-learning techniques can be applied to the data.</p>
<p>The application of graph representation learning in biomedical research has seen substantial progress in recent years. Machine learning algorithms, such as graph neural networks (GNNs), have been developed for various applications, including molecular interactions and recommendation systems. These techniques have shown significant promise in biological and biomedical data, predicting protein-protein interactions, understanding gene-disease associations, and discovering new drug targets <span class="citation"><a href="#ref-pawson2008network">[10]</a></span>.</p>
<p>Cell profiling, on the other hand, has emerged as a complementary strategy that provides a high-resolution view of biological systems at a cellular level. It involves the comprehensive analysis of cells in terms of their physiological, morphological, and molecular characteristics, allowing for the identification of phenotypic changes associated with disease states or drug responses. By producing high-dimensional data, cell profiling captures the complexity of cellular behaviours and responses, paving the way for discovering novel biomarkers and therapeutic targets <span class="citation"><a href="#ref-caicedo2017data">[11]</a></span>.</p>
<div id="graphs" class="section level2 hasAnchor" number="1.1">
<h2><span class="header-section-number">1.1</span> Graphs<a href="intro.html#graphs" class="anchor-section" aria-label="Anchor link to header"></a></h2>
<p>Networks, represented as graphs, can describe many biological entities and associations, making them highly effective tools in biomedical research. Graphs can represent components of a biological system as nodes or vertices and the interactions or relations between these components as links or edges. Graphs can be categorized into several models, such as scale-free, random, and hierarchical networks, each with distinct architectural features. These models can be mathematically analyzed through their topology and dynamics, with size-dependent descriptors such as the degree, path length, and clustering coefficient quantifying their connectivity, navigability, and local interconnectedness, respectively <span class="citation"><a href="#ref-barabasi2011network">[6]</a></span>.</p>
<div style="text-align: center;">
<figure>
<img src="assets/network-basics.svg"
alt="Graph basics"
id="graph-basics"
style="width: 80%; height: auto;">
<figcaption>
<a href="intro.html#graph-basics"><em>Graph descriptors categories</em></a>
</figcaption>
</figure>
</div>
</div>
<div id="graph-representation-learning" class="section level2 hasAnchor" number="1.2">
<h2><span class="header-section-number">1.2</span> Graph representation learning<a href="intro.html#graph-representation-learning" class="anchor-section" aria-label="Anchor link to header"></a></h2>
<p>Graph representation learning, a powerful approach for understanding and extracting meaningful information from complex networks, has gained prominence recently. This paradigm is beneficial for various downstream tasks such as node classification, link prediction, and graph classification, which require learning and encoding graph data’s inherent structure and features <span class="citation"><a href="#ref-chen2020graph">[12]</a></span>.</p>
<div style="text-align: center;">
<figure>
<iframe src="assets/network-basics.html" width="95%" height="550px" alt="Graph basics" id="graph-basics2">
</iframe>
<figcaption>
<em>Summary on network basics</em>
</figcaption>
</figure>
</div>
<p>Graph embedding methods are central to graph representation learning. These methods aim to represent nodes, edges, or entire graphs as continuous low-dimensional vectors while preserving the underlying graph structure. This process allows applying different types of machine-learning techniques on the data. Both unsupervised and supervised learning paradigms have been employed in deriving these embeddings. Unsupervised methods such as DeepWalk <span class="citation"><a href="#ref-perozzi2014deepwalk">[13]</a></span> and node2vec <span class="citation"><a href="#ref-grover2016node2vec">[14]</a></span> utilize graph connectivity patterns to learn latent feature representations, while supervised methods like GraphSAGE <span class="citation"><a href="#ref-lo2022graphsage">[15]</a></span> and Graph Convolutional Networks (GCN) employ node features and labels to guide the learning process <span class="citation"><a href="#ref-hamilton2017representation">[16]</a>, <a href="#ref-berg2017graph">[17]</a></span>.</p>
<p>Recent developments in the field of graph neural networks (GNNs) have introduced sophisticated message-passing techniques, such as those employed by the GraphSAGE and MPNN (Message Passing Neural Network) frameworks <span class="citation"><a href="#ref-gilmer2017neural">[18]</a></span>. These techniques provide a powerful way to learn node and edge representations by propagating and aggregating information from local neighborhoods. Moreover, they have been extended to non-Euclidean domains with frameworks like ChebyNet, GAT, and Recurrent Multi-Graph Neural Networks, enabling the capture of the intrinsic geometry and topology of the graph <span class="citation"><a href="#ref-defferrard2016convolutional">[19]</a>–<a href="#ref-monti2017geometric">[21]</a></span>.</p>
<p>In the domain of autoencoders, developments like SDNE, DNGR, and VGAE have shown effectiveness in learning low-dimensional embeddings from the graph’s structure without supervision <span class="citation"><a href="#ref-wang2016text">[22]</a>–<a href="#ref-cao2016deep">[24]</a></span>. These models often employ techniques such as matrix factorization and skip-gram models to reconstruct the original graph from the learned embeddings. Furthermore, autoencoders can be combined with graph regularization and various learning methods, such as Isomap, MDS, and LLE, to improve the quality of the learned representations further <span class="citation"><a href="#ref-majumdar2018graph">[25]</a>–<a href="#ref-qu2021supervised">[27]</a></span>.</p>
<p>Graph generation models like GCPN <span class="citation"><a href="#ref-shi2020graphaf">[28]</a></span>, JT-VAE <span class="citation"><a href="#ref-jin2018junction">[29]</a></span>, and GraphRNN <span class="citation"><a href="#ref-you2018graphrnn">[30]</a></span> have also been developed for generating graphs with desirable properties or learning latent graph spaces. In applications like drug discovery, these models can be particularly effective for generating new chemical structures with specific characteristics.</p>
<div style="text-align: center;">
<figure>
<iframe src="assets/network-representation-learning.html" width="95%" height="550px" alt="Graph representation learning" id="graph-representation">
</iframe>
<figcaption>
<em>Graph representation learning methods</em>
</figcaption>
</figure>
</div>
<p>Graph representation learning provides a powerful alternative to conventional deep learning techniques when dealing with complex data. Unlike traditional deep learning methods like neural networks and CNNs that use fixed-size inputs, it is specifically designed to capture intricate relationships within diverse inputs. This approach is versatile, handling various data types and incorporating rich, multimodal information to understand the underlying relationships better. It also remains consistent and accurate, regardless of node order or labeling, thanks to its invariance to isomorphism. This feature mainly benefits graph-structured data, ensuring resilience to arbitrary changes.</p>
<p>Furthermore, graph representation learning is efficient due to the sparse and local nature of graph data. Techniques like GraphSAGE and GCNs leverage this to perform efficient operations, even on large-scale graphs. In contrast, conventional deep learning methods might demand dense representations or significant memory resources, especially when dealing with high-dimensional data.</p>
<p>Graph representation learning has shown immense potential in transforming our understanding of complex networks. By combining graph theory, network diffusion, topological data analysis, and manifold learning, researchers continue to develop innovative approaches for analyzing and modeling graph data. As our knowledge in this field advances, the vast and complex world of graphs will likely become even more meaningful and accessible.</p>
</div>
<div id="cell-profiling" class="section level2 hasAnchor" number="1.3">
<h2><span class="header-section-number">1.3</span> Cell profiling<a href="intro.html#cell-profiling" class="anchor-section" aria-label="Anchor link to header"></a></h2>
<p>Cell profiling is a powerful method employed in drug discovery, involving analyzing cellular changes induced by various compounds. This approach leverages high-content microscopy imaging techniques like Cell Painting, where cells stained with multiplexed dyes are used to observe the effects of different substances <span class="citation"><a href="#ref-rietdijk2022morphological">[31]</a></span>.</p>
<p>Machine learning (ML) plays an instrumental role in cell profiling. It assists in deciphering the multidimensional profiles generated from image-based features, enabling researchers to identify relevant patterns and biological activity crucial for drug discovery <span class="citation"><a href="#ref-tian2023combining">[32]</a>, <a href="#ref-mullard2019machine">[33]</a></span>. Recent advancements have seen the incorporation of ML in image-based profiling, fostering an understanding of disease mechanisms, predicting drug activity and toxicity, and elucidating the mechanisms of action <span class="citation"><a href="#ref-SCHEEDER201843">[34]</a></span>.</p>
<p>Graph representation learning is particularly promising in this context. It excels at capturing the intricate relationships between various entities, such as proteins or compounds, and their interactions, which is pertinent in cell profiling. This technique can deal with diverse data types and incorporate rich information for a comprehensive understanding of the underlying relationships, making it a compelling choice for improving the efficiency and accuracy of drug discovery processes.</p>
</div>
</div>
<h3>References<a href="references.html#references" class="anchor-section" aria-label="Anchor link to header"></a></h3>
<div id="refs" class="references csl-bib-body">
<div id="ref-li2021graph" class="csl-entry">
<div class="csl-left-margin">[1] </div><div class="csl-right-inline">M. M. Li, K. Huang, and M. Zitnik, <span>“Graph representation learning in biomedicine,”</span> <em>arXiv preprint arXiv:2104.04883</em>, 2021. </div>
</div>
<div id="ref-li2022graph" class="csl-entry">
<div class="csl-left-margin">[2] </div><div class="csl-right-inline">M. M. Li, K. Huang, and M. Zitnik, <span>“Graph representation learning in biomedicine and healthcare,”</span> <em>Nature Biomedical Engineering</em>, pp. 1–17, 2022. </div>
</div>
<div id="ref-swinney2020recent" class="csl-entry">
<div class="csl-left-margin">[5] </div><div class="csl-right-inline">D. C. Swinney and J. A. Lee, <span>“Recent advances in phenotypic drug discovery,”</span> <em>F1000Research</em>, vol. 9, 2020. </div>
</div>
<div id="ref-barabasi2011network" class="csl-entry">
<div class="csl-left-margin">[6] </div><div class="csl-right-inline">A.-L. Barabási, N. Gulbahce, and J. Loscalzo, <span>“Network medicine: A network-based approach to human disease,”</span> <em>Nature reviews genetics</em>, vol. 12, no. 1, pp. 56–68, 2011. </div>
</div>
<div id="ref-piro2012network" class="csl-entry">
<div class="csl-left-margin">[7] </div><div class="csl-right-inline">R. M. Piro, <span>“Network medicine: Linking disorders,”</span> <em>Human genetics</em>, vol. 131, pp. 1811–1820, 2012. </div>
</div>
<div id="ref-yi2022graph" class="csl-entry">
<div class="csl-left-margin">[8] </div><div class="csl-right-inline">H.-C. Yi, Z.-H. You, D.-S. Huang, and C. K. Kwoh, <span>“Graph representation learning in bioinformatics: Trends, methods and applications,”</span> <em>Briefings in Bioinformatics</em>, vol. 23, no. 1, p. bbab340, 2022. </div>
</div>
<div id="ref-feng2022prediction" class="csl-entry">
<div class="csl-left-margin">[9] </div><div class="csl-right-inline">Y.-H. Feng and S.-W. Zhang, <span>“Prediction of drug-drug interaction using an attention-based graph neural network on drug molecular graphs,”</span> <em>Molecules</em>, vol. 27, no. 9, p. 3004, 2022. </div>
</div>
<div id="ref-pawson2008network" class="csl-entry">
<div class="csl-left-margin">[10] </div><div class="csl-right-inline">T. Pawson and R. Linding, <span>“Network medicine,”</span> <em>FEBS letters</em>, vol. 582, no. 8, pp. 1266–1270, 2008. </div>
</div>
<div id="ref-caicedo2017data" class="csl-entry">
<div class="csl-left-margin">[11] </div><div class="csl-right-inline">J. C. Caicedo <em>et al.</em>, <span>“Data-analysis strategies for image-based cell profiling,”</span> <em>Nature methods</em>, vol. 14, no. 9, pp. 849–863, 2017. </div>
</div>
<div id="ref-chen2020graph" class="csl-entry">
<div class="csl-left-margin">[12] </div><div class="csl-right-inline">F. Chen, Y.-C. Wang, B. Wang, and C.-C. J. Kuo, <span>“Graph representation learning: A survey,”</span> <em>APSIPA Transactions on Signal and Information Processing</em>, vol. 9, p. e15, 2020. </div>
</div>
<div id="ref-perozzi2014deepwalk" class="csl-entry">
<div class="csl-left-margin">[13] </div><div class="csl-right-inline">B. Perozzi, R. Al-Rfou, and S. Skiena, <span>“Deepwalk: Online learning of social representations,”</span> in <em>Proceedings of the 20th ACM SIGKDD international conference on knowledge discovery and data mining</em>, 2014, pp. 701–710. </div>
</div>
<div id="ref-grover2016node2vec" class="csl-entry">
<div class="csl-left-margin">[14] </div><div class="csl-right-inline">A. Grover and J. Leskovec, <span>“node2vec: Scalable feature learning for networks,”</span> in <em>Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining</em>, 2016, pp. 855–864. </div>
</div>
<div id="ref-lo2022graphsage" class="csl-entry">
<div class="csl-left-margin">[15] </div><div class="csl-right-inline">W. W. Lo, S. Layeghy, M. Sarhan, M. Gallagher, and M. Portmann, <span>“E-graphsage: A graph neural network based intrusion detection system for iot,”</span> in <em>NOMS 2022-2022 IEEE/IFIP network operations and management symposium</em>, 2022, pp. 1–9. </div>
</div>
<div id="ref-hamilton2017representation" class="csl-entry">
<div class="csl-left-margin">[16] </div><div class="csl-right-inline">W. L. Hamilton, R. Ying, and J. Leskovec, <span>“Representation learning on graphs: Methods and applications,”</span> <em>arXiv preprint arXiv:1709.05584</em>, 2017. </div>
</div>
<div id="ref-berg2017graph" class="csl-entry">
<div class="csl-left-margin">[17] </div><div class="csl-right-inline">R. van den Berg, T. N. Kipf, and M. Welling, <span>“Graph convolutional matrix completion,”</span> <em>arXiv preprint arXiv:1706.02263</em>, 2017. </div>
</div>
<div id="ref-gilmer2017neural" class="csl-entry">
<div class="csl-left-margin">[18] </div><div class="csl-right-inline">J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl, <span>“Neural message passing for quantum chemistry,”</span> in <em>International conference on machine learning</em>, 2017, pp. 1263–1272. </div>
</div>
<div id="ref-defferrard2016convolutional" class="csl-entry">
<div class="csl-left-margin">[19] </div><div class="csl-right-inline">M. Defferrard, X. Bresson, and P. Vandergheynst, <span>“Convolutional neural networks on graphs with fast localized spectral filtering,”</span> <em>Advances in neural information processing systems</em>, vol. 29, 2016. </div>
</div>
<div id="ref-monti2017geometric" class="csl-entry">
<div class="csl-left-margin">[21] </div><div class="csl-right-inline">F. Monti, M. Bronstein, and X. Bresson, <span>“Geometric matrix completion with recurrent multi-graph neural networks,”</span> <em>Advances in neural information processing systems</em>, vol. 30, 2017. </div>
</div>
<div id="ref-wang2016text" class="csl-entry">
<div class="csl-left-margin">[22] </div><div class="csl-right-inline">Z. Wang, J. Li, Z. Liu, and J. Tang, <span>“Text-enhanced representation learning for knowledge graph,”</span> in <em>Proceedings of international joint conference on artificial intelligent (IJCAI)</em>, 2016, pp. 4–17. </div>
</div>
<div id="ref-cao2016deep" class="csl-entry">
<div class="csl-left-margin">[24] </div><div class="csl-right-inline">S. Cao, W. Lu, and Q. Xu, <span>“Deep neural networks for learning graph representations,”</span> in <em>Proceedings of the AAAI conference on artificial intelligence</em>, 2016, vol. 30. </div>
</div>
<div id="ref-majumdar2018graph" class="csl-entry">
<div class="csl-left-margin">[25] </div><div class="csl-right-inline">A. Majumdar, <span>“Graph structured autoencoder,”</span> <em>Neural Networks</em>, vol. 106, pp. 271–280, 2018. </div>
</div>
<div id="ref-qu2021supervised" class="csl-entry">
<div class="csl-left-margin">[27] </div><div class="csl-right-inline">H. Qu, L. Li, Z. Li, and J. Zheng, <span>“Supervised discriminant isomap with maximum margin graph regularization for dimensionality reduction,”</span> <em>Expert Systems with Applications</em>, vol. 180, p. 115055, 2021. </div>
</div>
<div id="ref-shi2020graphaf" class="csl-entry">
<div class="csl-left-margin">[28] </div><div class="csl-right-inline">C. Shi, M. Xu, Z. Zhu, W. Zhang, M. Zhang, and J. Tang, <span>“Graphaf: A flow-based autoregressive model for molecular graph generation,”</span> <em>arXiv preprint arXiv:2001.09382</em>, 2020. </div>
</div>
<div id="ref-jin2018junction" class="csl-entry">
<div class="csl-left-margin">[29] </div><div class="csl-right-inline">W. Jin, R. Barzilay, and T. Jaakkola, <span>“Junction tree variational autoencoder for molecular graph generation,”</span> in <em>International conference on machine learning</em>, 2018, pp. 2323–2332. </div>
</div>
<div id="ref-you2018graphrnn" class="csl-entry">
<div class="csl-left-margin">[30] </div><div class="csl-right-inline">J. You, R. Ying, X. Ren, W. Hamilton, and J. Leskovec, <span>“Graphrnn: Generating realistic graphs with deep auto-regressive models,”</span> in <em>International conference on machine learning</em>, 2018, pp. 5708–5717. </div>
</div>
<div id="ref-rietdijk2022morphological" class="csl-entry">
<div class="csl-left-margin">[31] </div><div class="csl-right-inline">J. Rietdijk, T. Aggarwal, P. Georgieva, M. Lapins, J. Carreras-Puigvert, and O. Spjuth, <span>“Morphological profiling of environmental chemicals enables efficient and untargeted exploration of combination effects,”</span> <em>Science of The Total Environment</em>, vol. 832, p. 155058, 2022. </div>
</div>
<div id="ref-tian2023combining" class="csl-entry">
<div class="csl-left-margin">[32] </div><div class="csl-right-inline">G. Tian, P. J. Harrison, A. P. Sreenivasan, J. Carreras-Puigvert, and O. Spjuth, <span>“Combining molecular and cell painting image data for mechanism of action prediction,”</span> <em>Artificial Intelligence in the Life Sciences</em>, vol. 3, p. 100060, 2023. </div>
</div>
<div id="ref-mullard2019machine" class="csl-entry">
<div class="csl-left-margin">[33] </div><div class="csl-right-inline">A. Mullard, <span>“Machine learning brings cell imaging promises into focus,”</span> <em>Nature Reviews Drug Discovery</em>, vol. 18, no. 9, pp. 653–656, 2019. </div>
</div>
<div id="ref-SCHEEDER201843" class="csl-entry">
<div class="csl-left-margin">[34] </div><div class="csl-right-inline">C. Scheeder, F. Heigwer, and M. Boutros, <span>“Machine learning and image-based profiling in drug discovery,”</span> <em>Current Opinion in Systems Biology</em>, vol. 10, pp. 43–52, 2018, doi: <a href="https://doi.org/10.1016/j.coisb.2018.05.004">https://doi.org/10.1016/j.coisb.2018.05.004</a>. [Online]. Available: <a href="https://www.sciencedirect.com/science/article/pii/S2452310018300027">https://www.sciencedirect.com/science/article/pii/S2452310018300027</a></div>
</div>
</div>
</section>
</div>
</div>
</div>
<a href="index.html" class="navigation navigation-prev " aria-label="Previous page"><i class="fa fa-angle-left"></i></a>
<a href="methods.html" class="navigation navigation-next " aria-label="Next page"><i class="fa fa-angle-right"></i></a>
</div>
</div>
<script src="libs/gitbook-2.6.7/js/app.min.js"></script>
<script src="libs/gitbook-2.6.7/js/clipboard.min.js"></script>
<script src="libs/gitbook-2.6.7/js/plugin-search.js"></script>
<script src="libs/gitbook-2.6.7/js/plugin-sharing.js"></script>
<script src="libs/gitbook-2.6.7/js/plugin-fontsettings.js"></script>
<script src="libs/gitbook-2.6.7/js/plugin-bookdown.js"></script>
<script src="libs/gitbook-2.6.7/js/jquery.highlight.js"></script>
<script src="libs/gitbook-2.6.7/js/plugin-clipboard.js"></script>
<script>
gitbook.require(["gitbook"], function(gitbook) {
gitbook.start({
"sharing": {
"github": false,
"facebook": true,
"twitter": true,
"linkedin": false,
"weibo": false,
"instapaper": false,
"vk": false,
"whatsapp": false,
"all": ["facebook", "twitter", "linkedin", "weibo", "instapaper"]
},
"fontsettings": {
"theme": "white",
"family": "sans",
"size": 2
},
"edit": null,
"history": {
"link": null,
"text": null
},
"view": {
"link": null,
"text": null
},
"download": ["_main.pdf", "_main.epub", "_main.mobi"],
"search": {
"engine": "fuse",
"options": null
},
"toc": {
"collapse": "subsection"
},
"toolbar": {
"position": "fixed"
}
});
});
</script>
<!-- dynamically load mathjax for compatibility with self-contained -->
<script>
(function () {
var script = document.createElement("script");
script.type = "text/javascript";
var src = "true";
if (src === "" || src === "true") src = "https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.9/latest.js?config=TeX-MML-AM_CHTML";
if (location.protocol !== "file:")
if (/^https?:/.test(src))
src = src.replace(/^https?:/, '');
script.src = src;
document.getElementsByTagName("head")[0].appendChild(script);
})();
</script>
</body>
</html>