-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy path__init__.py
569 lines (487 loc) · 19.7 KB
/
__init__.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
import logging
import os
from types import SimpleNamespace
from typing import List, Optional, Tuple
import torch
import torch.nn as nn
import torch.nn.functional as F
from huggingface_hub import hf_hub_download
from safetensors import safe_open
from transformers import CLIPTokenizer
import comfy.model_management
import comfy.sample
import comfy.utils
class DecoderBlock(nn.Module):
def __init__(self, embed_dim: int, num_heads: int):
super().__init__()
self.norm1 = nn.LayerNorm(embed_dim)
self.self_attn = nn.MultiheadAttention(
embed_dim=embed_dim,
num_heads=num_heads,
batch_first=True,
)
self.norm2 = nn.LayerNorm(embed_dim)
self.cross_attn = nn.MultiheadAttention(
embed_dim=embed_dim,
num_heads=num_heads,
batch_first=True,
)
self.norm3 = nn.LayerNorm(embed_dim)
self.mlp = nn.Sequential(
nn.Linear(embed_dim, embed_dim * 4),
nn.GELU(),
nn.Identity(),
nn.Linear(embed_dim * 4, embed_dim),
)
def forward(
self,
x: torch.Tensor,
memory: torch.Tensor,
self_attn_mask: Optional[torch.Tensor] = None,
):
# self attention with mask
residual = x
x = self.norm1(x)
attn_output, _ = self.self_attn(
query=x,
key=x,
value=x,
attn_mask=self_attn_mask,
need_weights=False,
is_causal=True,
)
x = residual + attn_output
# cross attention
residual = x
x = self.norm2(x)
attn_output, _ = self.cross_attn(
query=x, key=memory, value=memory, need_weights=False
)
x = residual + attn_output
# FFN
residual = x
x = self.norm3(x)
x = residual + self.mlp(x)
return x
class Captioner(nn.Module):
def __init__(self, config, vision_embed_dim: int, vocab_size: int):
super().__init__()
self.embed_dim = vision_embed_dim
self.hidden_dim = config.hidden_dim
self.max_length = config.max_length
self.vocab_size = vocab_size
# projection from ViT dimension to decoder dimension
self.projection = nn.Linear(self.embed_dim, self.hidden_dim)
self.memory_pos_embedding = nn.Parameter(torch.zeros(1, 257, self.hidden_dim))
# decoder layers
self.layers = nn.ModuleList(
[
DecoderBlock(config.hidden_dim, config.num_heads)
for _ in range(config.num_blocks)
]
)
causal_mask = nn.Transformer.generate_square_subsequent_mask(self.max_length)
self.register_buffer("causal_mask", causal_mask, persistent=False)
class CLIPtionModel(nn.Module):
def __init__(self, config, clip, clip_vision):
super().__init__()
if not hasattr(clip, "cond_stage_model"):
raise ValueError("CLIP is missing from model checkpoint")
if not hasattr(clip.cond_stage_model, "clip_l"):
raise ValueError("Must use model which includes CLIP-L")
# store CLIP model references
self.clip_text = clip
self.clip_vision = clip_vision
self.tokenizer = clip.tokenizer.clip_l.tokenizer
self.text_model = clip.cond_stage_model.clip_l.transformer.text_model
self.vision_model = clip_vision.model.vision_model
# clip.cond_stage_model.clip_l.transformer.text_projection is empty
# so load a copy from the CLIPtion safetensors file instead
self.text_projection = nn.Linear(768, 768, bias=False)
# create caption decoder
self.captioner = Captioner(config, 1024, self.tokenizer.vocab_size)
# use CLIP's token embeddings for output projection
clip_embed_weight = self.text_model.embeddings.token_embedding.weight
self.output_projection = nn.Linear(
self.captioner.hidden_dim, self.tokenizer.vocab_size, bias=False
)
self.output_projection.weight = nn.Parameter(clip_embed_weight.clone())
def generate(
self,
images: torch.Tensor,
seed: int = 42,
temperature: float = 0.7,
best_of: int = 1,
ramble: bool = False,
) -> List[str]:
device = comfy.model_management.get_torch_device()
image_features, image_embeds = self._images_to_embeds(images, device)
captions = []
for image_idx in range(image_features.size(0)):
features = image_features[image_idx : image_idx + 1]
image_embed = image_embeds[image_idx : image_idx + 1]
# generate candidates in parallel using single copy of features
tokens = self._batch_generate(
features,
temperature,
best_of,
seed + image_idx,
ramble=ramble,
)
if best_of == 1:
text = self.tokenizer.decode(
tokens[0],
skip_special_tokens=True,
clean_up_tokenization_spaces=True,
)
captions.append(text)
continue
# calculate CLIP similarity for each candidate
candidates = []
for token_seq in tokens:
text = self.tokenizer.decode(
token_seq,
skip_special_tokens=True,
clean_up_tokenization_spaces=True,
)
text_embeds = self._text_to_embed(text, device)
clip_sim = torch.sum(image_embed * text_embeds, dim=-1)[0]
candidates.append((clip_sim.item(), text))
# pick highest scoring candidate
candidates.sort(key=lambda x: x[0], reverse=False)
for score, text in candidates:
logging.debug(f"({score:.3f}) {text}")
captions.append(candidates[-1][1])
return captions
def generate_beam(
self,
images: torch.Tensor,
beam_width: int = 4,
ramble: bool = False,
) -> List[str]:
device = comfy.model_management.get_torch_device()
image_features, image_embeds = self._images_to_embeds(images, device)
captions = []
for image_idx in range(image_features.size(0)):
features = image_features[image_idx].unsqueeze(0)
candidates = self._beam_search(
features,
image_embeds[image_idx : image_idx + 1],
device,
beam_width=beam_width,
ramble=ramble,
)
# pick highest scoring candidate
candidates.sort(key=lambda x: x[0], reverse=False)
for score, text in candidates:
logging.debug(f"({score:.3f}) {text}")
captions.append(candidates[-1][1])
return captions
def get_tokenizer(self) -> CLIPTokenizer:
return self.tokenizer
def _batch_generate(
self,
image_features: torch.Tensor,
temperature: float,
batch_size: int,
seed: Optional[int] = None,
ramble: bool = False,
) -> torch.Tensor:
tokenizer = self.tokenizer
output_projection = self.output_projection
token_embedding_ = self.text_model.embeddings.token_embedding
pos_embedding_ = self.text_model.embeddings.position_embedding
# project and add positional embeddings to image features
memory = self.captioner.projection(image_features)
memory = memory + self.captioner.memory_pos_embedding
memory = memory.repeat(batch_size, 1, 1)
# initialize sequences with EOS tokens and BOS at start
sequences = torch.full(
(batch_size, self.captioner.max_length),
tokenizer.eos_token_id,
dtype=torch.long,
device=image_features.device,
)
sequences[:, 0] = tokenizer.bos_token_id
current_length = 1
# set up random generator
generator = torch.Generator(device=image_features.device)
if seed is not None:
generator.manual_seed(seed)
# generate tokens until hitting max length or all sequences have EOS
for current_length in range(1, self.captioner.max_length - 1):
# embed current sequences
token_embeddings = token_embedding_(sequences[:, :current_length])
positions = torch.arange(current_length, device=sequences.device)
pos_embeddings = pos_embedding_(positions)
x = token_embeddings + pos_embeddings
# pass through decoder layers
mask = self.captioner.causal_mask[:current_length, :current_length]
for layer in self.captioner.layers:
x = layer(x, memory, self_attn_mask=mask)
# get next token probabilities
logits = output_projection(x[:, -1:])
logits = logits / temperature
# force EOS for sequences that hit EOS, prevent EOS for rambling sequences
prev_is_eos = sequences[:, current_length - 1] == tokenizer.eos_token_id
vocab_mask = torch.zeros_like(logits)
vocab_mask[prev_is_eos, :, :] = float("-inf")
vocab_mask[prev_is_eos, :, tokenizer.eos_token_id] = 0
if ramble:
vocab_mask[~prev_is_eos, :, tokenizer.eos_token_id] = float("-inf")
logits = logits + vocab_mask
probs = F.softmax(logits, dim=-1)
next_tokens = torch.multinomial(probs.squeeze(1), 1, generator=generator)
# add tokens to sequences
sequences[:, current_length] = next_tokens.squeeze(-1)
# stop if all sequences generated an EOS token
if not ramble and (next_tokens == tokenizer.eos_token_id).all():
break
return sequences
def _beam_search(
self,
image_features: torch.Tensor,
image_embed: torch.Tensor,
device: torch.device,
beam_width: int = 5,
ramble: bool = False,
):
tokenizer = self.tokenizer
captioner = self.captioner
token_embedding = self.text_model.embeddings.token_embedding
pos_embedding = self.text_model.embeddings.position_embedding
vocab_size = tokenizer.vocab_size
# project image features
memory = captioner.projection(image_features)
memory = memory + captioner.memory_pos_embedding
# start with beam_width copies of BOS token
current_tokens = torch.full(
(beam_width, 1), tokenizer.bos_token_id, dtype=torch.long, device=device
)
# track sequence scores
scores = torch.zeros(beam_width, device=device)
for step in range(captioner.max_length - 2):
# embed current tokens
token_embeddings = token_embedding(current_tokens)
positions = torch.arange(current_tokens.size(1), device=device)
pos_embeddings = pos_embedding(positions)
x = token_embeddings + pos_embeddings
# run decoder layers
seq_len = x.size(1)
mask = captioner.causal_mask[:seq_len, :seq_len]
for layer in captioner.layers:
x = layer(x, memory.repeat(beam_width, 1, 1), self_attn_mask=mask)
# get next token logits and log probabilities
logits = self.output_projection(x[:, -1:])
if ramble:
logits[:, :, tokenizer.eos_token_id] = -float("inf")
log_probs = F.log_softmax(logits, dim=-1)
if step == 0:
# pick top-k tokens for first step
scores = log_probs.squeeze(1)[0]
scores, indices = scores.topk(beam_width)
current_tokens = torch.cat(
[current_tokens[0:1].repeat(beam_width, 1), indices.unsqueeze(1)],
dim=1,
)
else:
# calculate scores for next tokens [beam_width x vocab_size]
next_scores = scores.unsqueeze(1) + log_probs.squeeze(1)
# force sequences to continue EOS after first one
prev_is_eos = current_tokens[:, -1] == tokenizer.eos_token_id
vocab_mask = torch.zeros_like(next_scores)
vocab_mask[prev_is_eos] = float("-inf")
vocab_mask[prev_is_eos, tokenizer.eos_token_id] = 0
next_scores = next_scores + vocab_mask
# pick top beam_width sequences
next_scores = next_scores.view(-1)
scores, indices = next_scores.topk(beam_width)
beam_indices = indices // vocab_size # which sequence each came from
token_indices = indices % vocab_size # which token to append
current_tokens = torch.cat(
[current_tokens[beam_indices], token_indices.unsqueeze(1)], dim=1
)
# check if all beams ended with EOS
if (current_tokens[:, -1] == tokenizer.eos_token_id).all():
break
# add final EOS token
current_tokens = torch.cat(
[
current_tokens,
torch.full((beam_width, 1), tokenizer.eos_token_id, device=device),
],
dim=1,
)
# rank final candidates by CLIP similarity
candidates = []
for idx in range(beam_width):
text = tokenizer.decode(
current_tokens[idx],
skip_special_tokens=True,
clean_up_tokenization_spaces=True,
)
text_embeds = self._text_to_embed(text, device)
clip_sim = torch.sum(image_embed * text_embeds, dim=-1)[0]
candidates.append((clip_sim.item(), text))
return candidates
def _images_to_embeds(self, images: torch.Tensor, device: torch.device) -> Tuple[torch.Tensor, torch.Tensor]:
if images.size(-1) == 1:
images = images.repeat(1, 1, 1, 3)
elif images.size(-1) == 4:
images = images[..., :3]
outputs = self.clip_vision.encode_image(images)
features = outputs.last_hidden_state.to(device, dtype=torch.float16)
if features.size(2) != 1024:
raise ValueError(
f"Expected image features to have 1024 dimensions but got {features.size(2)}. Please ensure you are using CLIP L."
)
embeds = outputs.image_embeds.to(device, dtype=torch.float16)
embeds /= embeds.norm(dim=-1, keepdim=True)
return features, embeds
def _text_to_embed(self, text: str, device: torch.device) -> torch.Tensor:
# load CLIP model and disable final projection since that's missing from comfy checkpoints
self.clip_text.load_model()
self.clip_text.cond_stage_model.reset_clip_options()
self.clip_text.cond_stage_model.set_clip_options({"projected_pooled": False})
# calculate text embedding
tokens = self.clip_text.tokenize(text)
clip_l = self.clip_text.cond_stage_model.clip_l
_, pooled = clip_l.encode_token_weights(tokens["l"])
text_embeds = self.text_projection(pooled.to(device, dtype=torch.float16))
text_embeds = text_embeds / text_embeds.norm(dim=-1, keepdim=True)
return text_embeds
class CLIPtionLoader:
CATEGORY = "pharmapsychotic"
FUNCTION = "load"
RETURN_TYPES = ("CLIPTION",)
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"clip": (
"CLIP",
{"tooltip": "The CLIP model used for encoding the text."},
),
"clip_vision": ("CLIP_VISION",),
}
}
def load(self, clip, clip_vision):
state_dict = {}
file = "CLIPtion_20241219_fp16.safetensors"
base_path = os.path.dirname(os.path.abspath(__file__))
if os.path.exists(os.path.join(base_path, file)):
model_path = os.path.join(base_path, file)
else:
repo_id = "pharmapsychotic/CLIPtion"
revision = "15ee8cb77a902616478a033332011ff640e72277"
model_path = hf_hub_download(
repo_id=repo_id, filename=file, revision=revision
)
with safe_open(model_path, framework="pt", device="cpu") as f:
for key in f.keys():
state_dict[key] = f.get_tensor(key)
tp_dict = {"weight": state_dict.pop("text_projection.weight")}
config = SimpleNamespace(
**{"hidden_dim": 768, "num_heads": 8, "num_blocks": 6, "max_length": 77}
)
model = CLIPtionModel(config, clip, clip_vision)
model.captioner.load_state_dict(state_dict)
model.text_projection.load_state_dict(tp_dict)
model.eval()
model.to(comfy.model_management.get_torch_device(), dtype=torch.float16)
return (model,)
class CLIPtionGenerate:
CATEGORY = "pharmapsychotic"
FUNCTION = "caption"
OUTPUT_IS_LIST = (True,)
RETURN_TYPES = ("STRING",)
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"model": ("CLIPTION", {"tooltip": "The CLIPtion model."}),
"image": ("IMAGE",),
"seed": (
"INT",
{
"default": 0,
"min": 0,
"max": 0xFFFFFFFFFFFFFFFF,
"tooltip": "The random seed used for creating the caption.",
},
),
},
"optional": {
"temperature": (
"FLOAT",
{"default": 0.7, "tooltip": "Temperature for sampling."},
),
"best_of": (
"INT",
{
"default": 1,
"min": 1,
"max": 64,
"tooltip": "Number of options to evaluate.",
},
),
"ramble": ("BOOLEAN", {"default": False}),
},
}
def caption(
self,
model: CLIPtionModel,
image: torch.Tensor,
seed: int,
temperature: float = 0.7,
best_of: int = 1,
ramble: bool = False,
):
with torch.inference_mode():
captions = model.generate(image, seed, temperature, best_of, ramble)
return (captions,)
class CLIPtionBeamSearch:
CATEGORY = "pharmapsychotic"
FUNCTION = "caption"
OUTPUT_IS_LIST = (True,)
RETURN_TYPES = ("STRING",)
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"model": ("CLIPTION", {"tooltip": "The CLIPtion model."}),
"image": ("IMAGE",),
"beam_width": (
"INT",
{
"default": 4,
"min": 1,
"max": 64,
"tooltip": "Number of beams to maintain during search.",
},
),
},
"optional": {
"ramble": ("BOOLEAN", {"default": False}),
},
}
def caption(
self,
model: CLIPtionModel,
image: torch.Tensor,
beam_width: int = 4,
ramble: bool = False,
):
with torch.inference_mode():
captions = model.generate_beam(image, beam_width, ramble)
return (captions,)
NODE_CLASS_MAPPINGS = {
"CLIPtionBeamSearch": CLIPtionBeamSearch,
"CLIPtionGenerate": CLIPtionGenerate,
"CLIPtionLoader": CLIPtionLoader,
}
NODE_DISPLAY_NAME_MAPPINGS = {
"CLIPtionBeamSearch": "CLIPtion Beam Search",
"CLIPtionGenerate": "CLIPtion Generate",
"CLIPtionLoader": "CLIPtion Loader",
}