From 93d63f4160bf423c6583beb629abf82792db6831 Mon Sep 17 00:00:00 2001 From: okenk Date: Tue, 12 Nov 2024 16:57:28 -0800 Subject: [PATCH] add rec length sample sizes to data summary --- docs/data_summary_doc.qmd | 63 +++++-- docs/index.html | 384 +++++++++++++++++++++----------------- 2 files changed, 259 insertions(+), 188 deletions(-) diff --git a/docs/data_summary_doc.qmd b/docs/data_summary_doc.qmd index 1240901..55ffe30 100644 --- a/docs/data_summary_doc.qmd +++ b/docs/data_summary_doc.qmd @@ -52,7 +52,8 @@ WDFW has alerted the STAT these do not include all tribal catches in recent year The following values were provided directly to the STAT: ```{r} -or_comm_catch <- readr::read_csv(here("Data/Confidential/Oregon Commercial landings_433_2023.csv")) +or_comm_catch <- read.csv(here("Data/Confidential/Oregon Commercial landings_433_2023.csv")) |> + tibble::as_tibble() or_comm_catch |> group_by(YEAR) |> summarise(catch_mt = sum(TOTAL)) |> @@ -74,8 +75,9 @@ Note this is for catch landed into Del Norte and Humboldt counties only. ## At-Sea landings ```{r} -ashop_catch <- readxl::read_excel(here("Data/Confidential/Oken_YLT_Catch data_1976-2023_102824.xlsx"), - sheet = 'Catch Summary Table') +ashop_catch <- readxl::read_excel( + here("Data/Confidential/Oken_YLT_Catch data_1976-2023_102824_ASHOP.xlsx"), + sheet = 'Catch Summary Table') ashop_catch |> mutate(catch_mt = EXPANDED_SumOfEXTRAPOLATED_2SECTOR_WEIGHT_KG / 1000) |> select(YEAR, catch_mt) |> @@ -90,8 +92,9 @@ ashop_catch |> Modern catches: ```{r} -wa_modern <- readr::read_csv(here('Data/Raw_not_confidential/RecFIN_WA_catch_to_2023.csv')) |> - filter(RECFIN_WATER_AREA_NAME != 'Canada', RECFIN_YEAR < 2023) +wa_modern <- read.csv(here('Data/Raw_not_confidential/RecFIN_WA_catch_to_2023.csv')) |> + filter(RECFIN_WATER_AREA_NAME != 'Canada', RECFIN_YEAR < 2023) |> + tibble::as_tibble() wa_modern |> group_by(RECFIN_YEAR) |> summarise(Dead_Catch_mt = sum(SUM_TOTAL_MORTALITY_MT)) |> knitr::kable(align = 'l', digits = 1) @@ -105,7 +108,8 @@ Questions: Historical catches: ```{r} -wa_historical <- readr::read_csv(here('Data/Raw_not_confidential/WA_historical_rec.csv')) +wa_historical <- read.csv(here('Data/Raw_not_confidential/WA_historical_rec.csv')) |> + tibble::as_tibble() wa_historical |> group_by(RECFIN_YEAR) |> @@ -117,7 +121,8 @@ wa_historical |> The following values were provided directly to the STAT: ```{r} -or_rec_catch <- readr::read_csv(here("Data/Confidential/Oregon Recreational landings_433_2023.csv")) +or_rec_catch <- read.csv(here("Data/Confidential/Oregon Recreational landings_433_2023.csv")) |> + tibble::as_tibble() or_rec_catch |> select(Year, Total_MT) |> knitr::kable(align = 'l', digits = 1) @@ -127,18 +132,19 @@ or_rec_catch |> ### California ```{r} -ca_modern <- readr::read_csv(here('Data/Raw_not_confidential/RecFIN_CA_catch_to_2023.csv')) |> - filter(DISTRICT_NAME == "Redwood (Humboldt County, Except Shelter Cover Area, And Del Norte County)" ) +ca_modern <- read.csv(here('Data/Raw_not_confidential/RecFIN_CA_catch_to_2023.csv')) |> + filter(grepl("Redwood", DISTRICT_NAME)) |> + tibble::as_tibble() ca_modern |> group_by(RECFIN_YEAR) |> summarise(Dead_Catch_mt = sum(SUM_TOTAL_MORTALITY_MT)) |> knitr::kable(align = 'l', digits = 1) - - ``` Note that 2020 proxy catches are missing, and we will need historical recreational catches that are not on RecFIN. +MRFSS data (1981-2004) does not have an obvious way to determine whether catches should be assigned to the northern or southern stock. + ## Length Data ### Commercial @@ -166,14 +172,41 @@ While running `PacFIN.Utilities::cleanPacFIN()`, it noted that 20 Washington age ### Recreational -STAT is working on it! +VERY tentative length sample sizes. I anticipate this is biased high as I have done no filtering. + +```{r} +rec_bio <- read.csv(here("Data/Confidential/RecFIN_Lengths.csv")) |> + tibble::as_tibble() |> + filter(STATE_NAME == "OREGON" | STATE_NAME == "WASHINGTON" | grepl("REDWOOD", RECFIN_PORT_NAME)) + +or_mrfss <- read.csv(here("Data/Confidential/MRFSS_BIO_2025 CYCLE_433.csv")) |> + tibble::as_tibble() + +or_mrfss_smry <- or_mrfss |> + filter(Length_Flag == 'measured') |> + group_by(Year) |> + summarise(n_length = n()) |> + mutate(STATE_NAME = 'OREGON') + +rec_bio |> + filter(!is.na(RECFIN_LENGTH_MM), STATE_NAME != 'OREGON' | !(RECFIN_YEAR %in% or_mrfss_smry$Year)) |> + group_by(RECFIN_YEAR, STATE_NAME) |> + summarize(n_length = n()) |> + rename(Year = RECFIN_YEAR) |> + bind_rows(or_mrfss_smry) |> + tidyr::pivot_wider(names_from = STATE_NAME, values_from = n_length, values_fill = 0) |> + arrange(Year) |> + knitr::kable(align = 'l') +``` +From Oregon MRFSS data (provided directly to the STAT, covering `r min(or_mrfss_smry$Year)` to `r max(or_mrfss_smry$Year)`) this only includes counts of samples with `Length_Flag == "measured"`. I was not sure of recommendations for how to filter the data. ### At-Sea ```{r} -ashop_lengths_old <- readxl::read_excel(here("Data/Confidential/Oken_YLT_Length data_1976-2023_102824.xlsx"), - sheet = "YLT_Length data 1976-1989") +ashop_lengths_old <- readxl::read_excel( + here("Data/Confidential/Oken_YLT_Length data_1976-2023_102824_ASHOP.xlsx"), + sheet = "YLT_Length data 1976-1989") ashop_lengths_new <- suppressWarnings( - readxl::read_excel(here("Data/Confidential/Oken_YLT_Length data_1976-2023_102824.xlsx"), + readxl::read_excel(here("Data/Confidential/Oken_YLT_Length data_1976-2023_102824_ASHOP.xlsx"), sheet = "YLT_Length data1990-2023") # warning is about converting text to numeric ) diff --git a/docs/index.html b/docs/index.html index a5805fc..e5b3ef4 100644 --- a/docs/index.html +++ b/docs/index.html @@ -6,7 +6,7 @@ - + Data summary