-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
113 lines (94 loc) · 5.5 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
# train the encoder
import os
import time
import torch
import wandb
import torch.nn as nn
from utils.loss import ProbabilityLoss, BatchLoss, ChannelLoss
import torch.distributed as dist
from utils import ramps, epochVal
def update_ema_variables(model, ema_model, alpha, global_step):
# Use the true average until the exponential average is more correct
alpha = min(1 - 1 / (global_step + 1), alpha)
for ema_param, param in zip(ema_model.parameters(), model.parameters()):
ema_param.data.mul_(alpha).add_(1 - alpha, param.data)
def trainEncoder(model, ema_model, dataloader, optimizer, logger, args):
probability_loss_func = ProbabilityLoss()
batch_sim_loss_func = BatchLoss(args.batch_size, args.world_size)
channel_sim_loss_func = ChannelLoss(args.batch_size, args.world_size)
classification_loss_func = nn.CrossEntropyLoss()
start = time.time()
cur_iters = 0
model.train()
train_loader, val_loader, test_loader = dataloader
cur_lr = args.lr
for epoch in range(args.epochs):
if isinstance(train_loader.sampler, torch.utils.data.distributed.DistributedSampler):
train_loader.sampler.set_epoch(epoch)
for i, ((img, ema_img), label) in enumerate(train_loader):
img, ema_img, label = img.cuda(non_blocking=True), ema_img.cuda(non_blocking=True), label.cuda(
non_blocking=True)
activations, outputs = model(img)
with torch.no_grad():
ema_activations, ema_output = ema_model(ema_img)
# classification loss
classification_loss = classification_loss_func(outputs, label)
# probability distribution loss
probability_loss = torch.sum(probability_loss_func(outputs, ema_output)) / args.batch_size
# batch loss
batch_sim_loss = torch.sum(batch_sim_loss_func(activations, ema_activations))
# channel loss
channel_sim_loss = torch.sum(channel_sim_loss_func(activations, ema_activations))
loss = classification_loss * args.classification_loss_weight
if epoch > 20:
loss = loss + probability_loss * args.probability_loss_weight + batch_sim_loss * args.batch_loss_weight + channel_sim_loss * args.channel_loss_weight
# log loss value only for rank 0
# to make it consistent with other losses
if args.rank == 0:
rank0_loss = loss.item()
optimizer.zero_grad()
loss.backward()
optimizer.step()
# update ema model
update_ema_variables(model, ema_model, args.ema_decay, cur_iters)
if dist.is_available() and dist.is_initialized():
loss = loss.data.clone()
dist.all_reduce(loss.div_(dist.get_world_size()))
cur_iters += 1
if args.rank == 0:
if cur_iters % 500 == 1 and logger is not None:
logger.log({'Strong augmentation': [wandb.Image(item) for item in img.permute(0,2,3,1).detach().cpu().numpy()[:5]]})
logger.log({'Weak augmentation': [wandb.Image(item) for item in ema_img.permute(0,2,3,1).detach().cpu().numpy()[:5]]})
if cur_iters % 10 == 0:
cur_lr = optimizer.param_groups[0]["lr"]
# evaluate on test and val set
val_acc, val_f1, val_auc, val_bac, val_sens, val_spec = epochVal(model, val_loader)
test_acc, test_f1, test_auc, test_bac, test_sens, test_spec = epochVal(model, test_loader)
if logger is not None:
logger.log({'training': {'total loss': rank0_loss,
'probability loss': probability_loss.item(),
'batch similarity loss': batch_sim_loss.item(),
'channel similarity loss': channel_sim_loss.item(),
'classification loss': classification_loss.item()}})
logger.log({'test': {'Accuracy': test_acc,
'F1 score': test_f1,
'AUC': test_auc,
'Balanced Accuracy': test_bac,
'Sensitivity': test_sens,
'Specificity': test_spec},
'validation': {'Accuracy': val_acc,
'F1 score': val_f1,
'AUC': val_auc,
'Balanced Accuracy': val_bac,
'Sensitivity': val_sens,
'Specificity': val_spec}})
print('\rEpoch: [%2d/%2d] Iter [%4d/%4d] || Time: %4.4f sec || lr: %.6f || Loss: %.4f' % (
epoch, args.epochs, i + 1, len(train_loader), time.time() - start,
cur_lr, loss.item()), end='', flush=True)
if args.rank == 0:
saveModelPath = os.path.join(args.checkpoints, 'epoch_{:d}_.pth'.format(epoch + 1))
if dist.is_available() and dist.is_initialized():
state_dict = model.module.state_dict()
else:
state_dict = model.state_dict()
torch.save(state_dict, saveModelPath)