-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathplum.py
1484 lines (1307 loc) · 71.7 KB
/
plum.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
"""A sage module for analyzing manifolds plumbed along 2-spheres.
This module enables the user to enter a plumbing diagram and return basic
information about the corresponding 3- and 4-dimensional manifolds,
for example the intersection form, homology, etc.
For negative definite plumbing trees equipped with a spin^c structure, the
program can also compute the weighted graded root :cite:p:`AJK`,
:math:`\widehat{Z}` invariant :cite:p:`GPPV`, and the
:math:`\widehat{\widehat{Z}}` invariant :cite:p:`AJK`.
.. bibliography::
:all:
"""
# This file was *autogenerated* from the file plum.sage
from sage.all_cmdline import * # import sage library
_sage_const_1 = Integer(1); _sage_const_2 = Integer(2); _sage_const_0 = Integer(0); _sage_const_3 = Integer(3); _sage_const_4 = Integer(4); _sage_const_5 = Integer(5); _sage_const_6 = Integer(6); _sage_const_20 = Integer(20); _sage_const_1en8 = RealNumber('1e-8'); _sage_const_8 = Integer(8)
#*****************************************************************************
# Copyright (C) 2021 Peter K. Johnson <[email protected]>
#
# Distributed under the terms of the GNU General Public License (GNU GPLv3)
# http://www.gnu.org/licenses/
#*****************************************************************************
from copy import copy, deepcopy
from itertools import product, groupby
from sage.graphs.graph_plot import GraphPlot
import math
import sys
class CustomVertex(tuple):
"""A class to allow for non-unique vertex labels for a sage Graph() object.
A vertex will be specified by a tuple v whose last entry is it's label. The
subtuple v[:-1] must uniquely specify the vertex.
"""
def __init__(self, v):
self.vertex = v
def __str__(self):
return str(self.vertex[-_sage_const_1 ])
class AdmissibleFamily:
"""A class to store and process a custom admissible family over the
rationals. In general, an admissible family can be defined over any
commutative ring with 1, however for now we only consider the rationals.
See :cite:p:`AJK` for more details.
An admissible family is completely determined by an infinite sequence in
RxR, where R is the underlying ring (which in this setup we choose to be
the rationals). To compute the weighted graded root, zhat, or zhat_hat, of a
given plumbing with respect to some admissible family one really only needs
a finite sequence in RxR. Specifically, one needs a list of max_degree - 2
elements of RxR where max_degree is the maximum degree over all vertices in
the plumbing.
Parameters
----------
values: list
A list of the form [(a_i,b_i)] where a_i and b_i are rational numbers
specifiying that F_{i+3}(0) = a_i and F_{i+3}(1) = b_i.
"""
def __init__(self, values):
try:
self._values = values
if not isinstance(self._values, list):
raise Exception("Error: the input must be a list.")
for x in values:
if not isinstance(x, tuple) or len(x) != _sage_const_2 :
raise Exception("Error: the input must be a list of"
" ordered pairs of rational numbers.")
elif x[_sage_const_0 ] not in QQ or x[_sage_const_1 ] not in QQ:
raise Exception("Error: the input must be a list of"
" ordered pairs of rational numbers.")
self._length = len(values) + _sage_const_2
except Exception as e:
print(e)
@property
def length(self):
return self._length
def evaluation(self, index, r):
v = self._values
if index == _sage_const_0 :
if r == _sage_const_2 or r== -_sage_const_2 :
return _sage_const_1
elif r == _sage_const_0 :
return -_sage_const_2
else:
return _sage_const_0
elif index == _sage_const_1 :
if r == -_sage_const_1 :
return _sage_const_1
elif r == -_sage_const_1 :
return _sage_const_1
else:
return _sage_const_0
elif index == _sage_const_2 :
if r == _sage_const_0 :
return _sage_const_1
else:
return _sage_const_0
elif index == _sage_const_3 :
if r % _sage_const_2 == _sage_const_0 :
return v[_sage_const_0 ][_sage_const_0 ]
else:
if r >= _sage_const_1 :
return v[_sage_const_0 ][_sage_const_1 ]
else:
return v[_sage_const_0 ][_sage_const_1 ]-_sage_const_1
elif index == _sage_const_4 :
if r % _sage_const_2 == _sage_const_0 :
if r <= _sage_const_0 :
return v[_sage_const_1 ][_sage_const_0 ]+(r/_sage_const_2 )*(v[_sage_const_0 ][_sage_const_1 ])-(r/_sage_const_2 )
else:
return v[_sage_const_1 ][_sage_const_0 ]+(r/_sage_const_2 )*(v[_sage_const_0 ][_sage_const_1 ])
else:
return v[_sage_const_1 ][_sage_const_1 ]+((r-_sage_const_1 )/_sage_const_2 )*(v[_sage_const_0 ][_sage_const_0 ])
elif index % _sage_const_2 == _sage_const_1 :
h = (index-_sage_const_5 )/_sage_const_2
if r % _sage_const_2 == _sage_const_0 :
f = v[index-_sage_const_3 ][_sage_const_0 ]
for i in range(_sage_const_0 , h+_sage_const_1 ):
f = f + binomial((index + r-_sage_const_5 -_sage_const_2 *i)/_sage_const_2 , index -_sage_const_3 -_sage_const_2 *i)*(v[_sage_const_2 *i][_sage_const_0 ])
f = f + binomial((index + r-_sage_const_5 -_sage_const_2 *i)/_sage_const_2 , index -_sage_const_4 -_sage_const_2 *i)*(v[_sage_const_2 *i+_sage_const_1 ][_sage_const_1 ])
return f
else:
f = v[index-_sage_const_3 ][_sage_const_1 ]
for i in range(_sage_const_0 , h+_sage_const_1 ):
f = f + binomial((index + r-_sage_const_4 -_sage_const_2 *i)/_sage_const_2 , index-_sage_const_3 -_sage_const_2 *i)*(v[_sage_const_2 *i][_sage_const_1 ])
f = f + binomial((index + r-_sage_const_6 -_sage_const_2 *i)/_sage_const_2 , index-_sage_const_4 -_sage_const_2 *i)*(v[_sage_const_2 *i+_sage_const_1 ][_sage_const_0 ])
if r >= _sage_const_1 :
return f
else:
return f - binomial((index+r-_sage_const_4 )/_sage_const_2 , index-_sage_const_3 )
else:
h = (index-_sage_const_6 )/_sage_const_2
if r % _sage_const_2 == _sage_const_0 :
f = v[index-_sage_const_3 ][_sage_const_0 ]+binomial((index+r-_sage_const_4 )/_sage_const_2 , index-_sage_const_3 )*(v[_sage_const_0 ][_sage_const_1 ])
for i in range(_sage_const_0 , h+_sage_const_1 ):
f = f + binomial((index+r-_sage_const_6 -_sage_const_2 *i)/_sage_const_2 ,index-_sage_const_4 -_sage_const_2 *i)*(v[_sage_const_2 *i+_sage_const_1 ][_sage_const_0 ])
f = f + binomial((index+r-_sage_const_6 -_sage_const_2 *i)/_sage_const_2 ,index-_sage_const_5 -_sage_const_2 *i)*(v[_sage_const_2 *i+_sage_const_2 ][_sage_const_1 ])
if r >= _sage_const_2 :
return f
else:
return f - binomial((index+r-_sage_const_4 )/_sage_const_2 , index-_sage_const_3 )
else:
f = v[index - _sage_const_3 ][_sage_const_1 ]+((r-_sage_const_1 )/_sage_const_2 )*(v[index-_sage_const_4 ][_sage_const_0 ])
for i in range(_sage_const_0 , h+_sage_const_1 ):
f = f + binomial((index +r-_sage_const_5 -_sage_const_2 *i)/_sage_const_2 ,index -_sage_const_3 -_sage_const_2 *i)*(v[_sage_const_2 *i][_sage_const_0 ])
f = f + binomial((index+r-_sage_const_5 -_sage_const_2 *i)/_sage_const_2 ,index-_sage_const_4 -_sage_const_2 *i)*(v[_sage_const_2 *i+_sage_const_1 ][_sage_const_1 ])
return f
class Plumbing:
"""A class for analyzing 3-manifolds plumbed along 2-spheres.
Parameters
----------
vertices_dict : dict
A dictionary of the form {a:b} where a is the index of a vertex of the
plumbing and b is its corresponding weight.
edges : array_like
A list of the form [(a,b)] where (a,b) represents an edge between the
vertices of indicies a and b.
Example
-------
>>> P = Plumbing({0:-1, 1:-2, 2:-3, 3:-7}, [(0,1), (0,2), (0,3)])
Here P is the plumbing consisting of 4 vertices with weights
-1, -2, -3, and -7 respectively. Vertices 0 and 1, 0 and 2, 0 and 3
are connected by edges.
"""
def __init__(self, vertices_dict, edges):
try:
self._vertices_dict = vertices_dict
self._edges = edges
self._vertex_count = len(vertices_dict)
self._edge_count = len(edges)
self._graph = Graph()
self._vertex_list = ['$v_{' + str(i) + '}\\hspace{2} '
+ str(vertices_dict[i])
+ '$' for i in range(_sage_const_0 , self._vertex_count)]
self._edge_list = [(self._vertex_list[x[_sage_const_0 ]], self._vertex_list[x[_sage_const_1 ]])
for x in edges]
self._graph.add_vertices(self._vertex_list)
self._graph.add_edges(self._edge_list)
self._plot_options = options = {'vertex_color': 'black',
'vertex_size': _sage_const_20 ,
'layout': 'tree'}
self._graph_plot = GraphPlot(self._graph, self._plot_options)
self._weight_vector = Matrix(list(vertices_dict.values())).T
self._degree_vector = [self._graph.degree(x) for x in
self._vertex_list]
self._degree_vector = Matrix(self._degree_vector).T
self._intersection_form = None
self._intersection_smith_form = None
self._is_intersection_form_non_singular = None
self._is_tree = None
self._definiteness_type = None
self._bad_vertices = None
self._artin_fcycle = None
self._is_weakly_elliptic = None
self._is_rational = None
self._is_almost_rational = None
self._homology = None
except:
print("Error: Plumbing entered incorrectly. Please check input.")
@property
def vertex_count(self):
"""int: The number of vertices in the plumbing."""
return self._vertex_count
@property
def edge_count(self):
"""int: The number of edges in the plumbing"""
return self._edge_count
@property
def weight_vector(self):
"""Matrix: An sx1 matrix of the form [[m_1],...,[m_s]] where m_i is the
weight of vertex i and s is the number of vertices of the plumbing."""
return self._weight_vector
@property
def degree_vector(self):
"""Matrix: An sx1 matrix of the form [[d_1],...,[d_s]] where d_i is the
degree (or valence) of vertex i and s is the number of vertices of the
plumbing."""
return self._degree_vector
@property
def max_degree(self):
"int: the maximum degree over all vertices in the plumbing."
return max(self.degree_vector.list())
@property
def intersection_form(self):
"""Matrix: A matrix representing the intersection form of the
plumbing."""
if self._intersection_form is None:
intersection_form = self._graph.adjacency_matrix(vertices=self._vertex_list)
for i in range(_sage_const_0 , self._vertex_count):
intersection_form[i, i] = self._weight_vector[i,_sage_const_0 ]
self._intersection_form = intersection_form
return self._intersection_form
@property
def intersection_smith_form(self):
"""array_like: A list of the form D, U, V, where D is the smith normal
form of the intersection form and where U and V are matrices such that
U*intersection_form*V = D.
"""
if self._intersection_smith_form is None:
self._intersection_smith_form = self.intersection_form.smith_form()
return self._intersection_smith_form
@property
def is_intersection_form_non_singular(self):
"bool: True if the intersection form is non-singular, False otherwise."
if self._is_intersection_form_non_singular is None:
d = self.intersection_form.det()
if d == _sage_const_0 :
self._is_intersection_form_non_singular = False
else:
self._is_intersection_form_non_singular = True
return self._is_intersection_form_non_singular
@property
def is_tree(self):
"""bool: True if the plumbing diagram is a finite tree, False
otherwise."""
if self._is_tree is None:
self._is_tree = self._graph.is_tree()
return self._is_tree
@property
def definiteness_type(self):
"""str: The definiteness type of the intersection form of the plumbing.
Warnings
--------
Since the eigenvalues are computed numerically, they may contain small
error terms. Therefore, to check the sign of an eigenvalue, we have
chosen a small error threshold (1e-8). This potentially could lead to
incorrect answers in some edge cases when the true eigenvalues are very
close to zero, but non-zero.
"""
if self._definiteness_type is None:
eigenvalues = self.intersection_form.eigenvalues()
if all(i < -_sage_const_1en8 for i in eigenvalues):
self._definiteness_type = "negative definite"
elif all(i > _sage_const_1en8 for i in eigenvalues):
self._definiteness_type = "positive definite"
elif all(i == _sage_const_0 for i in eigenvalues):
self._definiteness_type = "zero matrix"
elif all(i <= _sage_const_1en8 for i in eigenvalues):
self._definiteness_type = "negative semi-definite"
elif all(i >= -_sage_const_1en8 for i in eigenvalues):
self._definiteness_type = "positive semi-definite"
else:
return "positive and negative eigenvalues"
return self._definiteness_type
@property
def bad_vertices(self):
"""tuple: A tuple of the form (bv, bv_count) where bv is a string
listing the bad vertices, and bv_count is the number of bad vertices.
Recall a bad vertex is a vertex whose weight is greater than the
negative of its degree.
"""
if self._bad_vertices is None:
bv_count = _sage_const_0
bv = ''
test = False
for i in range(_sage_const_0 , self._vertex_count):
if test and self._weight_vector[i,_sage_const_0 ] > -self._degree_vector[i,_sage_const_0 ]:
bv = bv + ", v_{"+str(i)+"}"
bv_count += _sage_const_1
else:
if self._weight_vector[i,_sage_const_0 ] > -self._degree_vector[i,_sage_const_0 ]:
bv = ": v_{"+str(i)+"}"
bv_count += _sage_const_1
test = True
if bv_count == _sage_const_0 :
bv = '0 bad vertices.'
elif bv_count == _sage_const_1 :
bv = "1 bad vertex" + bv + "."
else:
bv = str(bv_count) + " bad vertices" + bv + "."
self._bad_vertices = bv, bv_count
return self._bad_vertices
@property
def artin_fcycle(self):
"""tuple: A tuple of the form (x, comp_seq) where x is the Artin
fundamental cycle of the plumbing and comp_seq is the associated
computation sequence used to compute x. The Artin fundamental cycle is
used to determine the rationality of the plumbing graph. See
:cite:p:`Nem_On_the` for more details about the Artin fundamental cycle.
"""
if self._artin_fcycle is None:
if self.definiteness_type == "negative definite" and self.is_tree:
x = [_sage_const_0 ] * self.vertex_count
x[_sage_const_0 ] = _sage_const_1
x = Matrix(x)
z = x*self.intersection_form
comp_seq = [deepcopy(x)]
while any(i > _sage_const_0 for i in z.row(_sage_const_0 )):
j = _sage_const_0
while z[_sage_const_0 ,j] <= _sage_const_0 :
j = j + _sage_const_1
x[_sage_const_0 ,j] = x[_sage_const_0 ,j] + _sage_const_1
comp_seq.append(deepcopy(x))
z = x * self.intersection_form
self._artin_fcycle = x, comp_seq
else:
self._artin_fcycle = "Not applicable; plumbing is not a negative\
definite tree."
return self._artin_fcycle
@property
def is_weakly_elliptic(self):
"""bool: True if the plumbing is weakly elliptic, False or N/A
otherwise.
"""
if self._is_weakly_elliptic is None:
if self.is_tree and self.definiteness_type == "negative definite":
k = -self.weight_vector.T
for i in range(_sage_const_0 , self.vertex_count):
k[_sage_const_0 ,i] = k[_sage_const_0 ,i]-_sage_const_2
m = -(k * self.artin_fcycle[_sage_const_0 ].T
+ self.artin_fcycle[_sage_const_0 ]
* self.intersection_form
* self.artin_fcycle[_sage_const_0 ].T)[_sage_const_0 ,_sage_const_0 ] / _sage_const_2
if m == _sage_const_0 :
self._is_weakly_elliptic = True
self._is_rational = False
else:
self._is_weakly_elliptic = False
else:
self._is_weakly_elliptic = "Not applicable; plumbing is not a\
negative definite tree."
return self._is_weakly_elliptic
@property
def is_rational(self):
"""bool: True if the plumbing is rational, False or N/A otherwise."""
if self._is_rational is None:
if self.is_tree and self.definiteness_type == "negative definite":
k = -self.weight_vector.T
for i in range(_sage_const_0 , self.vertex_count):
k[_sage_const_0 ,i] = k[_sage_const_0 ,i]-_sage_const_2
m = -(k * self.artin_fcycle[_sage_const_0 ].T
+ self.artin_fcycle[_sage_const_0 ]
* self.intersection_form
* self.artin_fcycle[_sage_const_0 ].T)[_sage_const_0 ,_sage_const_0 ] / _sage_const_2
if m == _sage_const_1 :
self._is_rational = True
self._is_weakly_elliptic = False
else:
self._is_rational = False
else:
self._is_rational = "Not applicable; plumbing is not a negative\
definite tree."
return self._is_rational
@property
def homology(self):
"""tuple: A tuple of the form (homology_group, homology_generators,
rank, invariant_factors) where homology_group is the first homology of the plumbed
3-manifold, homology generators are the corresponding generators of
homology_group, and rank is the Z-rank of the homology, and invariant_factors
are the orders of the corresponding generators.
"""
if self._homology is None:
smith = self.intersection_smith_form
D = smith[_sage_const_0 ]
U = smith[_sage_const_1 ]
U_inv = U.inverse()
s = self.vertex_count
rank = D.diagonal().count(_sage_const_0 )
num_of_pivots = s - rank
invariant_factors = [D[i,i] for i in range(_sage_const_0 , num_of_pivots)]
p = invariant_factors.count(_sage_const_1 )
invariant_factors = invariant_factors[p:]
finite_ord_coker_gens = [U_inv[:, i] for i in range(p,
num_of_pivots)]
infinite_ord_coker_gens = [U_inv[:, i] for i in range(num_of_pivots,
s)]
homology_generators = []
if rank == _sage_const_0 :
if len(invariant_factors) == _sage_const_0 :
homology_group = "0"
homology_generators.append("N/A")
else:
homology_group = "Z_{" + str(invariant_factors[_sage_const_0 ]) + "}"
homology_generators.append(finite_ord_coker_gens[_sage_const_0 ])
for i in range(_sage_const_1 , len(invariant_factors)):
homology_group = homology_group + " + Z_{" + str(invariant_factors[i]) + "}"
homology_generators.append(finite_ord_coker_gens[i])
elif rank == _sage_const_1 :
homology_group = "Z"
homology_generators.append(infinite_ord_coker_gens[_sage_const_0 ])
for i in range(_sage_const_0 , len(invariant_factors)):
homology_group = homology_group + " + Z_{" + str(invariant_factors[i]) + "}"
homology_generators.append(finite_ord_coker_gens[i])
else:
homology_group = "Z^{" + str(rank) + "}"
for i in range(_sage_const_0 , rank):
homology_generators = homology_generators.append(infinite_ord_coker_gens[i])
for i in range(_sage_const_0 , len(invariant_factors)):
homology_group = homology_group + " + Z_{" + str(invariant_factors[i]) + "}"
homology_generators.append(finite_ord_coker_gens[i])
self._homology = homology_group, homology_generators, rank, invariant_factors
return self._homology
def is_almost_rational(self, test_threshold):
"""Tests if plumbing is almost rational.
Parameters
----------
test_threshold: int
A non-negative integer which is the amount by
which framings are decreased to test for rationality. See
:cite:p:`Nem_On_the` for the definition of almost rational.
Returns
-------
bool/str
True if plumbing is verfied to be almost rational given the
test threshold. False if determined to be not almost rational.
Otherwise, inconclusive given the choice of test threshold, or
not applicable if plumbing is not a negative definite tree.
"""
try:
if (not test_threshold.is_integer()) or test_threshold < _sage_const_0 :
raise Exception("Test threshold parameter must be a"
" non-negative integer.")
if self._is_almost_rational is None:
if self.is_tree and self.definiteness_type == "negative definite":
if self.bad_vertices[_sage_const_1 ] < _sage_const_2 :
self._is_almost_rational = True
elif self._is_rational or self._is_weakly_elliptic:
self._is_almost_rational = True
else:
very_bad_vert_count = _sage_const_0
for i in range(_sage_const_0 , self._vertex_count):
if -self._weight_vector[i,_sage_const_0 ] <= self._degree_vector[i,_sage_const_0 ] - _sage_const_2 :
very_bad_vert_count = very_bad_vert_count + _sage_const_1
if very_bad_vert_count > _sage_const_1 :
self._is_almost_rational = False
else:
self._is_almost_rational = "inconclusive, using\
test threshold of " + str(test_threshold) + " try a larger test\
threshold."
counter = _sage_const_1
while counter <= test_threshold:
for i in range(_sage_const_0 , self._vertex_count):
v = deepcopy(self._vertices_dict)
v[i] = v[i] - counter
plumb = Plumbing(v, self._edges)
k = [-j-_sage_const_2 for j in v.values()]
k = Matrix(k)
m = -(k * plumb.artin_fcycle[_sage_const_0 ].T
+ plumb.artin_fcycle[_sage_const_0 ]
* self.intersection_form
* plumb.artin_fcycle[_sage_const_0 ].T)[_sage_const_0 ,_sage_const_0 ] / _sage_const_2
if m == _sage_const_1 :
self._is_almost_rational = True
break
counter = counter + _sage_const_1
else:
self._is_almost_rational = "Not applicable; plumbing is not\
a negative definite tree."
return self._is_almost_rational
except Exception as e:
print(e)
def display(self):
"Displays the plumbing graph."
self._graph_plot.show()
def is_in_integer_image(self, k):
"""Given a vector k, check if it is in the integer image of the
intersection form.
Parameters
----------
k: list
A list of integers of length = self.vertex_count.
Returns
-------
bool
True if k is in the integer image of the intersection form, False
otherwise.
"""
k = Matrix(k).T
if self.is_intersection_form_non_singular:
h = self.intersection_form.inverse()*k
for x in h.column(_sage_const_0 ):
if float(x) % _sage_const_1 != _sage_const_0 :
return False
return True
else:
smith = self.intersection_smith_form
D = smith[_sage_const_0 ]
U = smith[_sage_const_1 ]
num_of_pivots = self.vertex_count - D.diagonal().count(_sage_const_0 )
j = U * k
for i in range(_sage_const_0 , num_of_pivots):
if float(j[i, _sage_const_0 ]) % float(D[i, i]) != _sage_const_0 :
return False
for i in range(num_of_pivots, self.vertex_count):
if float(j[i, _sage_const_0 ]) != _sage_const_0 :
return False
return True
def equiv_spinc_reps(self, k1, k2):
"""Given two characteristic vectors, check if they represent the same
spin^c structure.
Parameters
----------
k1: list
A list of integers [x_1, ..., x_s] where s is the number of vertices
of the plumbing.
k2: list
A list of integers [y_1, ..., y_s] where s is the number of vertices
of the plumbing.
Returns
-------
bool
True if k1 and k2 represent the same spinc structure on the
plumbed 3-manifold, False otherwise.
"""
try:
k1 = Matrix(k1).T
k2 = Matrix(k2).T
for i in range(_sage_const_0 , self.vertex_count):
if (float(k1[i, _sage_const_0 ])-float(self.weight_vector[i, _sage_const_0 ])) % _sage_const_2 != _sage_const_0 :
raise Exception
if (float(k2[i, _sage_const_0 ])-float(self.weight_vector[i, _sage_const_0 ])) % _sage_const_2 != _sage_const_0 :
raise Exception
k = (_sage_const_1 /_sage_const_2 )*(k1-k2)
k = k.column(_sage_const_0 )
return self.is_in_integer_image(k)
except:
print("Error: one or more of the inputs are not a characteristic "
"vector.")
def char_vector_properties(self, k):
"""Given a characteristic vector k, compute some basic properties.
Parameters
----------
k: list
A list of integers [x_1, ..., x_s] where s is the number of vertices
of the plumbing.
Returns
-------
tuple
(a,b,c, d) where: a is a string which says if the associated spin^c
structure on the plumbed 3-manifold is torsion or non-torsion, b is
the order of the 1st Chern class of the associated spin^c structure
on the plumbed 3-manifold, c is the square of the 1st Chern class of
the associated spin^c structure on the plumbed 4-manifold (in
other words, c = k^2), d is the t-variable normalization.
"""
try:
k = Matrix(k).T
for i in range(_sage_const_0 , self.vertex_count):
if (float(k[i, _sage_const_0 ])-float(self.weight_vector[i, _sage_const_0 ])) % _sage_const_2 != _sage_const_0 :
raise Exception("Input is not a characteristic vector.")
if self.is_intersection_form_non_singular:
h = self.intersection_form.inverse()*k
denominators_of_h_entries = [x.denominator() for x in
h.column(_sage_const_0 )]
order_of_chern_class = abs(lcm(denominators_of_h_entries))
square = (k.T * h)[_sage_const_0 , _sage_const_0 ]
t_norm = (sum(k)[_sage_const_0 ]-sum(self.weight_vector)[_sage_const_0 ]-sum(self.degree_vector)[_sage_const_0 ])/_sage_const_2
return "Torsion", order_of_chern_class, square, t_norm
else:
smith = self.intersection_smith_form
D = smith[_sage_const_0 ]
U = smith[_sage_const_1 ]
V = smith[_sage_const_2 ]
num_of_pivots = self.vertex_count - D.diagonal().count(_sage_const_0 )
j = U * k
for i in range(num_of_pivots, self.vertex_count):
if j[i, _sage_const_0 ] != _sage_const_0 :
return "Non-Torsion", "N/A", "N/A"
h = self.vertex_count*[_sage_const_0 ]
for i in range(_sage_const_0 , num_of_pivots):
h[i] = j[i, _sage_const_0 ]/D[i, i]
denoms_of_non_zero_h_entries = [h[i].denominator() for i in
range(_sage_const_0 , num_of_pivots)]
order_of_chern_class = abs(lcm(denoms_of_non_zero_h_entries))
h = V * Matrix(h).T
square = (k.T * h)[_sage_const_0 ,_sage_const_0 ]
t_norm = (sum(k)[_sage_const_0 ]-sum(self.weight_vector)[_sage_const_0 ]-sum(self.degree_vector)[_sage_const_0 ])/_sage_const_2
return "Torsion", order_of_chern_class, square, t_norm
except Exception as e:
print(e)
def chi(self, k, x):
"""
Given a vector k and a lattice point x (represented as a vector),
compute chi_k(x) = -1/2(k(x) + (x,x)).
Parameters
----------
k: list
A list of integers [a_1, ..., a_s] where s is the number of vertices
of the plumbing.
x: list
A list of integers [x_1, ..., x_s] where s is the number of vertices
of the plumbing.
Returns
-------
sage constant
The value of chi_k(x)
"""
k = Matrix(k)
x = Matrix(x).T
return -(_sage_const_1 /_sage_const_2 )*(k * x + x.T * self.intersection_form * x)[_sage_const_0 ,_sage_const_0 ]
def chi_min(self, k):
"""
Given a vector k, computes the minimum of the function chi_k on
Euclidean space and computes the vector which achieves this minimum.
Note this vector, in general, need not be integral.
Parameters
----------
k: list
A list of integers [a_1, ..., a_s] where s is the number of vertices
of the plumbing.
Returns
-------
tuple
(a,b) where: a is the minimum value of chi_k over R^s and b is a
list representing the unique vector which achieves this minimum.
"""
if self.definiteness_type == "negative definite":
chi_min = self.char_vector_properties(k)[_sage_const_2 ]/_sage_const_8
k = Matrix(k).T
chi_min_vector = -(_sage_const_1 /_sage_const_2 ) * self.intersection_form.inverse() * k
return chi_min, list(chi_min_vector.column(_sage_const_0 ))
else:
return "Only implemented for negative definite plumbings."
def F(self, k, x, A = None):
"""
Given a vector k, lattice element x, and admissible family A, computes
:math: `F_{\Gamma, k}(x)`. See :cite:p:`AJK` for more details. If no
admissible family is specified, then the admissible family used in the
computation is :math:`\widehat{F}`.
Parameters
----------
k: list
A list of integers [a_1, ..., a_s] where s is the number of vertices
of the plumbing.
x: list
A list of integers [x_1, ..., x_s] where s is the number of vertices
of the plumbing.
A: AdmissibleFamily
An AdmissibleFamily object.
Returns
-------
int
The value :math: `F_{\Gamma, k}(x)`
"""
k = Matrix(k).T
x = Matrix(x).T
y = _sage_const_2 *self.intersection_form*x + k - self.weight_vector - self.degree_vector
F = _sage_const_1
for i in range(_sage_const_0 , self.vertex_count):
if self.degree_vector[i,_sage_const_0 ] == _sage_const_0 :
if y[i, _sage_const_0 ] == _sage_const_0 :
F = -_sage_const_2 *F
elif y[i, _sage_const_0 ] != _sage_const_2 and y[i, _sage_const_0 ]!= -_sage_const_2 :
F = _sage_const_0
return F
elif self.degree_vector[i,_sage_const_0 ] == _sage_const_1 :
if y[i, _sage_const_0 ] == _sage_const_1 :
F = -F
elif y[i, _sage_const_0 ] != -_sage_const_1 :
F = _sage_const_0
return F
elif self.degree_vector[i, _sage_const_0 ] == _sage_const_2 :
if y[i, _sage_const_0 ] != _sage_const_0 :
F = _sage_const_0
return F
else:
if A is not None:
F = F*A.evaluation(self.degree_vector[i,_sage_const_0 ], y[i,_sage_const_0 ])
else:
if abs(y[i, _sage_const_0 ]) >= self.degree_vector[i, _sage_const_0 ]-_sage_const_2 :
F = F*(_sage_const_1 /_sage_const_2 )*sign(y[i,_sage_const_0 ])**(self.degree_vector[i, _sage_const_0 ])
F = F*binomial((self.degree_vector[i, _sage_const_0 ]
+ abs(y[i, _sage_const_0 ]))/_sage_const_2 -_sage_const_2 ,
self.degree_vector[i, _sage_const_0 ] -_sage_const_3 )
else:
F = _sage_const_0
return F
return F
def chi_local_min_bounds(self, k):
"""
Given a vector k, computes two lists [-chi_k(-e_1), ..., -chi_k(-e_s)]
and [chi_k(e_1), ..., chi_k(e_s)] where e_i = (0, ..., 0, 1, 0, ..., 0)
is the ith standard basis vector and s is the number of vertices of the
plumbing. For the purpose of this function, see the function
chi_local_min_set.
Parameters
----------
k: list
A list of integers [x_1, ..., x_s].
Returns
-------
tuple
(a,b) where: a = [-chi_k(-e_1), ..., -chi_k(-e_s)] and
b = [chi_k(e_1), ..., chi_k(e_s)]
"""
I = Matrix.identity(self.vertex_count)
negative_I = -I
positive_basis = [I.row(i) for i in range(_sage_const_0 , self.vertex_count)]
negative_basis = [negative_I.row(i) for i in
range(_sage_const_0 , self.vertex_count)]
chi_upper = [self.chi(k, x) for x in positive_basis]
chi_lower = [-self.chi(k, x) for x in negative_basis]
return chi_lower, chi_upper
def chi_local_min_set(self, k):
"""
Given a vector k, computes the set of lattice points at
which chi_k achieves a local min, when restricted to the lattice. In
other words, it computes the lattice points x such that
chi_k(x) <= chi_k(x +/- e_i) for all i where
e_i = (0, ..., 0, 1, 0, ..., 0) is the ith standard basis vector. Note
chi_k(x +/- e_i) = chi_k(x)+ chi_k(+/- e_i) -/+ (x, e_i). Hence, x is
in the min set iff -chi_k(-e_i) <= (x, e_i) <= chi_k(e_i) for all i.
This explains the reason for the helper function chi_local_min_bounds.
Parameters
----------
k: list
A list of integers [x_1, ..., x_s] where s is the number of vertices
of the plumbing.
Returns
-------
lists
Each element of the output list is a tuple (a, b, c) where a is
an element of the local min set, b is chi_k(a),
c = a dot (weight_vector + degree_vector).
"""
if self.definiteness_type == "negative definite" and self.is_tree:
bounds = self.chi_local_min_bounds(k)
M_inv = self.intersection_form.inverse()
iterator = [range(bounds[_sage_const_0 ][i], bounds[_sage_const_1 ][i]+_sage_const_1 ) for i in
range(_sage_const_0 , self.vertex_count)]
iterator = product(*iterator)
lms = []
for x in iterator:
y = M_inv*Matrix(x).T
if y in MatrixSpace(ZZ, self.vertex_count, _sage_const_1 ):
u = tuple(y.column(_sage_const_0 ))
pairing = (Matrix(u)*(self.weight_vector
+ self.degree_vector))[_sage_const_0 ,_sage_const_0 ]
lms.append((u,self.chi(k, u), pairing))
lms.sort(key = lambda x:x[_sage_const_1 ])
return lms
else:
print("Only implemented for negative definite plumbing trees")
def chi_sublevels(self, k, n):
"""
Given a characteristic vector k and a positive integer n, this function
computes the lattice points in each of the first n non-empty sublevel
sets of chi_k. Also, computes chi_k(x) and
x dot (weight_vector + degree_vector) associated to each lattice
point x in each sublevel set.
Parameters
----------
k: list
A list of integers [x_1, ..., x_s] where s is the number of vertices
in the plumbing.
n: int
A positive integer.
Returns
-------
list
A list of the form [S_1, ..., S_n] where S_i is the ith non-empty
sublevel set. Each S_i is a set whose elements are tuples of the
form (a, b, c) where a is a lattice point in S_i, b = chi_k(a),
c = a dot (weight_vector + degree_vector).
"""
try:
if (not n.is_integer()) or n < _sage_const_1 :
raise Exception("Second parameter must be a postive integer.")
if self.definiteness_type == "negative definite" and self.is_tree:
lms = self.chi_local_min_set(k)
groups = groupby(lms, operator.itemgetter(_sage_const_1 ))
lms_partition = [tuple(group) for key, group in groups]
min_level = lms_partition[_sage_const_0 ][_sage_const_0 ][_sage_const_1 ]
sublevels = [set(lms_partition[_sage_const_0 ])]
for i in range(_sage_const_1 , n):
sublevel_height = i + min_level
sublevel_temp1 = copy(sublevels[-_sage_const_1 ])
sublevel_temp2 = copy(sublevels[-_sage_const_1 ])
for x in sublevel_temp1:
for j in range(_sage_const_0 , self.vertex_count):
y = list(x[_sage_const_0 ])
z = list(x[_sage_const_0 ])
y[j] = y[j]-_sage_const_1
z[j] = z[j]+_sage_const_1
if self.chi(k, y) == sublevel_height:
pairing = (Matrix(y)*(self.weight_vector
+ self.degree_vector))[_sage_const_0 ,_sage_const_0 ]
sublevel_temp2.add((tuple(y), sublevel_height,
pairing))
if self.chi(k, z) == sublevel_height:
pairing = (Matrix(z)*(self.weight_vector
+ self.degree_vector))[_sage_const_0 ,_sage_const_0 ]
sublevel_temp2.add((tuple(z), sublevel_height,
pairing))
for u in lms_partition:
if u[_sage_const_0 ][_sage_const_1 ] == sublevel_height:
sublevel_temp2 = sublevel_temp2.union(set(u))
break
sublevels.append(sublevel_temp2)
return sublevels
else:
print("Only implemented for negative definite plumbing trees.")
except Exception as e:
print(e)
def weighted_graded_root(self, k, n, A = None):
"""
Given a characteristic vector k, a positive integer n, and an admissible
family A, computes the first n levels of the weighted graded root
corresponding to the admissible family. If no admissible family is
specified, then the admissible family used in the computation is
:math:`\widehat{F}`. See :cite:p:`AJK` for details.
Parameters
----------
k: list
A list of integers [x_1, ..., x_s] where s is the number of vertices
in the plumbing. k should be a characteristic vector.
n: int
A positive integer.
A: AdmissibleFamily
An AdmissibleFamily object.
Returns
-------
tuple
A tuple of the form (a, b) where a is a GraphPlot object
representing the weighted graded root and b is a list of the
two-variable weights of the vertices of the weighted graded root.
"""
try:
if A is not None and A.length < self.max_degree:
raise Exception("Admissible family does not contain enough"
" information. Please use an admissible family"
" that of length at least the max degree.")
elif self.definiteness_type == "negative definite" and self.is_tree:
sublevels = self.chi_sublevels(k, n)
c_prop = self.char_vector_properties(k)
k_squared = c_prop[_sage_const_2 ]
t_norm = c_prop[_sage_const_3 ]
for element in sublevels[_sage_const_0 ]:
break
min_chi_level = element[_sage_const_1 ]
d_inv = _sage_const_2 *(min_chi_level) -self.vertex_count/_sage_const_4 -k_squared/_sage_const_4
normalization_term = -(k_squared + _sage_const_3 *self.vertex_count
+ sum(self.weight_vector)[_sage_const_0 ])/_sage_const_4 + sum(k)/_sage_const_2 - sum(self.weight_vector + self.degree_vector)[_sage_const_0 ]/_sage_const_4
top_sublevel = list(sublevels[-_sage_const_1 ])
top_sublevel.sort()
vertices = [list(w[_sage_const_0 ]) for w in top_sublevel]
num_of_vertices = len(vertices)
top_sublevel_graph = Graph(num_of_vertices)
ts_edges = []
for i in range(_sage_const_1 , num_of_vertices):
for j in range(_sage_const_0 , self.vertex_count):
x = copy(vertices[i])
x[j] = x[j] - _sage_const_1
y = copy(vertices[i])
y[j] = y[j] + _sage_const_1
if x in vertices[:i]:
ts_edges.append((vertices[:i].index(x), i))