-
Notifications
You must be signed in to change notification settings - Fork 17
/
cone.py
282 lines (236 loc) · 9.26 KB
/
cone.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
import itertools
from pyopengles import *
from math import *
def eglshorts(L):
"""Converts a tuple to an array of eglshorts (would a pointer return be better?)"""
return (eglshort*len(L))(*L)
class Buffer(object):
"""Hold a pair of Buffer Objects to draw a part of a model"""
def __init__(self,pts,faces):
"""Generate a vertex buffer to hold data and indices"""
pts=[tuple(p) for p in pts]
normals=[[] for p in pts]
for f in faces:
a,b,c=f[0:3]
n=tuple(vec_normal(vec_cross(vec_sub(pts[b],pts[a]),vec_sub(pts[c],pts[a]))))
for x in f[0:3]:
normals[x].append(n)
for i,N in enumerate(normals):
if len(N)==0:
normals[i]=(0,0,.01)
continue
s=1.0/len(N)
normals[i]=tuple( vec_normal( [sum(v[k] for v in N) for k in range(3)] ) )
P=[ p+n for p,n in zip(pts,normals)]
X=eglfloats([x for x in itertools.chain(*P)])
P=[f[0:3] for f in faces]
E=eglshorts([x for x in itertools.chain(*P)])
self.vbuf=eglint()
opengles.glGenBuffers(1,ctypes.byref(self.vbuf))
self.ebuf=eglint()
opengles.glGenBuffers(1,ctypes.byref(self.ebuf))
self.select()
opengles.glBufferData(GL_ARRAY_BUFFER, ctypes.sizeof(X), ctypes.byref(X), GL_STATIC_DRAW);
opengles.glBufferData(GL_ELEMENT_ARRAY_BUFFER, ctypes.sizeof(E), ctypes.byref(E), GL_STATIC_DRAW);
self.ntris = len(faces)
def select(self):
"""Makes our buffers active"""
opengles.glBindBuffer(GL_ARRAY_BUFFER, self.vbuf);
opengles.glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, self.ebuf);
def draw(self,s):
self.select()
opengles.glVertexAttribPointer(s.attr_normal, 3, GL_FLOAT, 0, 24, 12);
opengles.glVertexAttribPointer(s.attr_vertex, 3, GL_FLOAT, 0, 24, 0);
opengles.glEnableVertexAttribArray(s.attr_normal);
opengles.glEnableVertexAttribArray(s.attr_vertex);
opengles.glDrawElements ( GL_TRIANGLES, self.ntris*3, GL_UNSIGNED_SHORT, 0 );
class Shader(object):
def __init__(self):
"""Prepares a shader for 3d point + normal"""
self.vshader_source = ctypes.c_char_p(
"""
attribute vec3 vertex;
attribute vec3 normal;
uniform mat4 view;
varying vec3 n;
void main(void) {
//light = 0.5+max(0.0,0.5*dot(normal,vec3(0.7,0,0.7)));
n=normal;
gl_Position = view * vec4(vertex,1.0);
}""")
self.fshader_source = ctypes.c_char_p(
"""
varying vec3 n;
void main(void) {
gl_FragColor = vec4(n.x+0.5,n.y+0.5,n.z+0.5,1.0);
}""")
vshader = opengles.glCreateShader(GL_VERTEX_SHADER);
opengles.glShaderSource(vshader, 1, ctypes.byref(self.vshader_source), 0)
opengles.glCompileShader(vshader);
self.showlog(vshader)
fshader = opengles.glCreateShader(GL_FRAGMENT_SHADER);
opengles.glShaderSource(fshader, 1, ctypes.byref(self.fshader_source), 0);
opengles.glCompileShader(fshader);
self.showlog(fshader);
program = opengles.glCreateProgram();
opengles.glAttachShader(program, vshader);
opengles.glAttachShader(program, fshader);
opengles.glLinkProgram(program);
self.showprogramlog(program);
self.program = program
self.attr_vertex = opengles.glGetAttribLocation(program, "vertex");
self.attr_normal = opengles.glGetAttribLocation(program, "normal");
self.unif_view = opengles.glGetUniformLocation(program, "view");
self.select()
def select(self):
"""Makes this shader active"""
opengles.glUseProgram ( self.program );
def select_view(self,M,M_reflect=None):
"""Call this to program the view matrix.
"""
E=eglfloats(list(itertools.chain(*M)))
opengles.glUniformMatrix4fv(self.unif_view,16,eglint(0),ctypes.byref(E));
def showlog(self,shader):
"""Prints the compile log for a shader"""
N=1024
log=(ctypes.c_char*N)()
loglen=ctypes.c_int()
opengles.glGetShaderInfoLog(shader,N,ctypes.byref(loglen),ctypes.byref(log))
print log.value
def showprogramlog(self,shader):
"""Prints the compile log for a program"""
N=1024
log=(ctypes.c_char*N)()
loglen=ctypes.c_int()
opengles.glGetProgramInfoLog(shader,N,ctypes.byref(loglen),ctypes.byref(log))
print log.value
class View(object):
"""The view holds the perspective transformations for the current view.
Call lookAt to set the camera.
Call begin_matrix to start a new view based on this perspective, then translate or rotate to set up transform.
Can use view.V to access the matrix representing the current transform"""
def lookAt(self,at,eye):
"""Set up view matrix to look from eye to at including perspective"""
self.L=LookAtMatrix(at,eye)
self.P=ProjectionMatrix()
self.M=mat_mult(self.L,self.P) # Apply transform/rotation first, then shift into perspective space
self.L_reflect=LookAtMatrix(at,eye,reflect=True)
self.M_reflect=mat_mult(self.L_reflect,self.P)
def begin_matrix(self):
self.V = [row[:] for row in self.M]
def translate(self,pt):
"""Move an object to the given location"""
V=self.V
V[3]=[sum(pt[j]*V[j][i] for j in xrange(3))+V[3][i] for i in xrange(4)]
def rotate(self,angle):
"""Rotate an object by an angle in degrees"""
c=math.cos(angle*3.1415/180.0)
s=math.sin(angle*3.1415/180.0)
M=[[c,s,0,0],[-s,c,0,0],[0,0,1,0],[0,0,0,1]]
self.V=mat_mult(M,self.V)
class Cone:
def __init__(self,sz=20.0,numsides=20):
"""Prepares vertices and faces for a cone. Both sides of each face are drawn"""
pts = []
faces = []
for a in range(numsides):
x=sz*math.sin(2*3.14159*a/numsides)
y=sz*math.cos(2*3.14159*a/numsides)
pts.append((x,y,0))
faces.append((numsides,(a+1)%numsides,a))
pts.append((0.0,0.0,sz))
self.buf=Buffer(pts,faces)
self.pts=pts
self.faces=faces
def draw(self,s):
self.buf.draw(s)
def TranslateMatrix(pt):
M=[[0]*4 for i in range(4)]
for i in range(4):
M[i][i]=1.0
for i in range(3):
M[3][i]=pt[i]
return M
def ProjectionMatrix(near=10,far=1000.0,fov_h=1.7,fov_v=1.4):
"""Setup projection matrix with given distance to near and far planes
and fields of view in radians"""
# Matrices are considered to be M[row][col]
# Use DirectX convention, so need to do rowvec*Matrix to transform
w=1./tan(fov_h*0.5)
h=1./tan(fov_v*0.5)
Q=far/(far-near)
M=[[0]*4 for i in range(4)]
M[0][0]=w
M[1][1]=h
M[2][2]=Q
M[3][2]=-Q*near
M[2][3]=1
return M
def vec_sub(A,B):
return [a-b for a,b in zip(A,B)]
def vec_dot(A,B):
return sum(a*b for a,b in zip(A,B))
def vec_cross(a,b):
return [a[1]*b[2]-a[2]*b[1],a[2]*b[0]-a[0]*b[2],a[0]*b[1]-a[1]*b[0]]
def vec_normal(A):
n=math.sqrt(sum(a**2 for a in A))+0.0001
return [a/n for a in A]
def LookAtMatrix(at,eye,up=[0,0,1],reflect=False):
"""Define a matrix of an eye looking at"""
# If reflect, then reflect in plane -20.0 (water depth)
if reflect:
depth=-20.0 # Shallower to avoid edge effects
eye[2]=2*depth-eye[2]
at[2]=2*depth-at[2]
zaxis = vec_normal(vec_sub(at,eye))
xaxis = vec_normal(vec_cross(up,zaxis))
yaxis = vec_cross(zaxis,xaxis)
xaxis.append(-vec_dot(xaxis,eye))
yaxis.append(-vec_dot(yaxis,eye))
zaxis.append(-vec_dot(zaxis,eye))
z=[0,0,0,1.0]
return [ [xaxis[a],yaxis[a],zaxis[a],z[a]] for a in range(4)]
def BillboardMatrix():
"""Define a matrix that copies x,y and sets z to 0.9"""
return [ [1.0,0.0,0.0,0.0],[0.0,1.0,0.0,0.0],[0.0,0.0,0.0,0.0],[0.0,0.0,0.9,1.0]]
def mat_mult(A,B):
return [ [ sum(A[i][j]*B[j][k] for j in range(4)) for k in range(4)] for i in range(4)]
def mat_transpose(A):
return [ [ A[k][i] for k in range(4)] for i in range(4)]
def vec_mat_mult(A,B):
return [ sum(A[j]*B[j][k] for j in range(4)) for k in range(4)]
egl = EGL()
cone = Cone(50);
s = Shader()
v = View()
opengles.glViewport ( 0, 0, egl.width, egl.height );
opengles.glDepthRangef(eglfloat(-1.0),eglfloat(1.0))
opengles.glClearColor ( eglfloat(0.3), eglfloat(0.3), eglfloat(0.7), eglfloat(1.0) );
opengles.glBindFramebuffer(GL_FRAMEBUFFER,0)
opengles.glFrontFace(GL_CW)
opengles.glCullFace(GL_BACK)
opengles.glEnable(GL_CULL_FACE)
opengles.glEnable(GL_DEPTH_TEST)
print 'Setup viewport'
v.lookAt([0,0,0],[0,-100,50])
from pymouse import start_mouse
m=start_mouse()
frame=0
def draw(s):
global frame
frame+=1
opengles.glBindFramebuffer(GL_FRAMEBUFFER,0)
opengles.glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT);
s.select()
s.select_view(v.M)
v.begin_matrix()
v.rotate(frame*2)
s.select_view(v.V)
cone.draw(s)
opengles.glFinish()
openegl.eglSwapBuffers(egl.display, egl.surface)
while 1:
if m.finished:
break
draw(s)
m.stop()