forked from limbryan/py-dynamixel
-
Notifications
You must be signed in to change notification settings - Fork 1
/
vis_repertoire_hexapod.py
154 lines (115 loc) · 5.4 KB
/
vis_repertoire_hexapod.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
import argparse
import sys
import matplotlib.pyplot as plt
import pandas as pd
import py_dynamixel.io as io
from hexapod_controller import Hexapod
## Example to task Hexapod class ##
ports = io.get_available_ports()
print('available ports:', ports)
if not ports:
raise IOError('No port available.')
port = ports[0]
print('Using the first on the list', port)
ctrl_freq = 100
Hexa = Hexapod(port, ctrl_freq)
Hexa.neutral_controller()
def key_event(event, args):
if event.key == 'escape':
Hexa.shutdown()
sys.exit(0)
def click_event(event, args):
'''
# reutrns a list of tupples of x-y points
click_in = plt.ginput(1,-1) # one click only, should not timeout
print("click_in: ",click_in)
selected_cell = [int(click_in[0][0]), int(click_in[0][1])]
print(selected_cell)
selected_x = selected_cell[0]
selected_y = selected_cell[1]
'''
# event.button ==1 is the left mouse click
if event.button == 1:
selected_x = int(event.xdata)
selected_y = int(event.ydata)
selected_solution = data[(data["x_bin"] == selected_x) & (data["y_bin"] == selected_y)]
# For hexapod omnitask
print("SELECTED SOLUTION SHAPE: ", selected_solution.shape)
selected_solution = selected_solution.iloc[0, :]
#selected_ctrl = selected_solution.iloc[5:-4].to_numpy() # bryan archive
selected_ctrl = selected_solution.iloc[4:-4].to_numpy() # luca archive
print("Selected ctrl shape: ", selected_ctrl.shape)
# print(selected_ctrl[0].shape) #(1,36)
# hexapod uni
# selected_solution = selected_solution.iloc[0, :]
# selected_ctrl = selected_solution.iloc[8:-2].to_numpy()
# print("Selected ctrl shape: ", selected_ctrl.shape) # should be 3661
# print("Selected descriptor bin: " ,selected_x, selected_y)
print("Selected descriptor from archive: ", selected_solution.iloc[1:3].to_numpy())
# print("Selected fitness from archive: ", selected_solution.iloc[0])
# ---- PLAY THE SELECTED CONTROLLER -----#
Hexa.run_sin_controller(selected_ctrl, duration=3.0)
Hexa.neutral_controller()
print("EXECUTE CONTROLLER")
def read_archive_luca(filename):
data = pd.read_csv(filename, delim_whitespace=True)
# data = data.iloc[:,:-1] # drop the last column which was made because there is a comma after last value i a line
# data = np.loadtxt(args.filename)
# exchanging x & y axis + inverting left and right.
data["scale_x"] = (-1 * data.iloc[:, 2] + 1.2) / 2.4
data["scale_y"] = (data.iloc[:, 1] + 1.2) / 2.4
# For Hexapod
data['x_bin'] = pd.cut(x=data["scale_x"],
bins=[p / 100 for p in range(101)],
labels=[p for p in range(100)])
data['y_bin'] = pd.cut(x=data["scale_y"],
bins=[p / 100 for p in range(101)],
labels=[p for p in range(100)])
return data
def read_archive_bryan(filename):
data = pd.read_csv(filename)
data = data.iloc[:,:-1] # drop the last column which was made because there is a comma after last value i a line
# exchanging x & y axis + inverting left and right.
data["scale_x"] = data.iloc[:, 1]
data["scale_y"] = data.iloc[:, 2]
# For Hexapod
data['x_bin'] = pd.cut(x=data["scale_x"],
bins=[p / 100 for p in range(101)],
labels=[p for p in range(100)])
data['y_bin'] = pd.cut(x=data["scale_y"],
bins=[p / 100 for p in range(101)],
labels=[p for p in range(100)])
return data
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--filename", type=str) # file to visualize rollouts from
parser.add_argument("--plot_type", type=str, default="grid", help="scatter plot or grid plot")
args = parser.parse_args()
#data = read_archive_luca(args.filename)
data = read_archive_bryan(args.filename)
print(data["x_bin"])
# cmap = matplotlib.cm.get_cmap('Spectral') # Getting a list of color values
# data['color_dict'] = pd.Series({k:cmap(1) for k in data['scaled_x']})
# =====================PLOT DATA===========================#
# FOR BINS / GRID
if args.plot_type == "grid":
fig, ax = plt.subplots()
data.plot.scatter(x="x_bin", y="y_bin", c=0, colormap="viridis", s=2, ax=ax) # bryan archive
#data.plot.scatter(x="x_bin", y="y_bin", c=3, colormap="viridis", s=2, ax=ax) # luca archive
plt.xlim(0, 100)
plt.ylim(0, 100)
else:
# fig, ax = plt.subplots(nrows=1, ncols=2)
fig, ax = plt.subplots()
# FOR JUST A SCATTER PLOT OF THE DESCRIPTORS - doesnt work for interactive selection
data.plot.scatter(x=2,y=3,c=0,colormap='Spectral', s=2, ax=ax, vmin=-0.1, vmax=1.2)
#data.plot.scatter(x=1, y=2, c=0, colormap='viridis', s=2, ax=ax)
# data.plot.scatter(x=1,y=2,s=2, ax=ax[0])
# data.plot.scatter(x=3,y=4,c=0,colormap='viridis', s=2, ax=ax)
# data.plot.scatter(x=4,y=5,s=2, ax=ax[1])
# plt.xlim(-0.5,0.5)
# plt.ylim(-0.5,0.5)
# event to look out. visualization or closing the plot
fig.canvas.mpl_connect('key_press_event', lambda event: key_event(event, args))
fig.canvas.mpl_connect('button_press_event', lambda event: click_event(event, args))
plt.show()