-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain.py
256 lines (230 loc) · 8.85 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
import os
import torch
import wandb
from torch.utils.data import DataLoader
import yaml
import argparse
import pprint
from process_dataset import load_processed_dataset
from evaluator import init_evaluator, log_eval
from utils import eval_log_freq
from BaseGrooveTransformers import initialize_model, calculate_loss, train_loop
parser = argparse.ArgumentParser()
parser.add_argument("--paths", help="paths file", default="configs/paths.yaml")
parser.add_argument("--testing", help="testing mode", default=False)
parser.add_argument("--wandb", help="log to wandb", default=True)
parser.add_argument("--eval_train", help="evaluator train set", default=True)
parser.add_argument("--eval_test", help="evaluator test set", default=False)
parser.add_argument("--eval_validation", help="evaluator validation set", default=True)
parser.add_argument(
"--only_final_eval", help="only final total evaluation", default=False
) # sweeps
parser.add_argument("--dump_eval", help="dump evaluator file", default=True)
parser.add_argument("--load_model", help="load model parameters", default=None)
parser.add_argument("--notes", help="wandb run notes", default=None)
parser.add_argument("--tags", help="wandb run tags", default=None)
# hyperparameters
parser.add_argument(
"--config",
help="yaml config file. if given, the rest of the arguments are not taken into "
"account",
default=None,
)
parser.add_argument("--experiment", help="experiment id", default=None)
parser.add_argument(
"--encoder_only", help="transformer encoder only", default=1, type=int
)
parser.add_argument(
"--optimizer_algorithm", help="optimizer_algorithm", default="sgd", type=str
)
parser.add_argument("--d_model", help="model dimension", default=64, type=int)
parser.add_argument(
"--n_heads", help="number of heads for multihead attention", default=16, type=int
)
parser.add_argument("--dropout", help="dropout factor", default=0.2, type=float)
parser.add_argument(
"--num_encoder_decoder_layers",
help="number of encoder/decoder layers",
default=7,
type=int,
)
parser.add_argument(
"--hit_loss_penalty",
help="non_hit loss multiplier (between 0 and 1)",
default=1,
type=float,
)
parser.add_argument("--batch_size", help="batch size", default=16, type=int)
parser.add_argument(
"--dim_feedforward", help="feed forward layer dimension", default=256, type=int
)
parser.add_argument("--learning_rate", help="learning rate", default=0.05, type=float)
parser.add_argument("--epochs", help="number of training epochs", default=100, type=int)
args = parser.parse_args()
# args are loaded all from config file or all from cli
if args.config is not None:
with open(args.config, "r") as f:
hyperparameters = yaml.safe_load(f)
else:
hyperparameters = dict(
encoder_only=args.encoder_only,
optimizer_algorithm=args.optimizer_algorithm,
d_model=args.d_model,
n_heads=args.n_heads,
dropout=args.dropout,
num_encoder_decoder_layers=args.num_encoder_decoder_layers,
hit_loss_penalty=args.hit_loss_penalty,
batch_size=args.batch_size,
dim_feedforward=args.dim_feedforward,
learning_rate=args.learning_rate,
epochs=args.epochs,
load_model=args.load_model,
)
if args.testing:
hyperparameters["epochs"] = 1
# config files without experiment specified
if args.experiment is not None:
hyperparameters["experiment"] = args.experiment
assert "experiment" in hyperparameters.keys(), "experiment not specified"
pprint.pprint(hyperparameters)
with open(args.paths, "r") as f:
paths = yaml.safe_load(f)
os.environ["WANDB_MODE"] = "online" if args.wandb else "offline"
if __name__ == "__main__":
wandb.init(
config=hyperparameters,
project=hyperparameters["experiment"],
job_type="train",
notes=args.notes,
tags=args.tags,
settings=wandb.Settings(start_method="fork"),
)
params = {
"model": {
"experiment": wandb.config.experiment,
"encoder_only": wandb.config.encoder_only,
"optimizer": wandb.config.optimizer_algorithm,
"d_model": wandb.config.d_model,
"n_heads": wandb.config.n_heads,
"dim_feedforward": wandb.config.dim_feedforward,
"dropout": wandb.config.dropout,
"num_encoder_layers": wandb.config.num_encoder_decoder_layers,
"num_decoder_layers": 0
if wandb.config.encoder_only
else wandb.config.num_encoder_decoder_layers,
"max_len": 32,
"embedding_size_src": 16
if wandb.config.experiment != "InfillingClosedHH_Symbolic"
else 27, # mso
"embedding_size_tgt": 27, # hvo
"device": "cuda" if torch.cuda.is_available() else "cpu",
},
"training": {
"learning_rate": wandb.config.learning_rate,
"batch_size": wandb.config.batch_size,
"hit_loss_penalty": wandb.config.hit_loss_penalty
# 'lr_scheduler_step_size': 30,
# 'lr_scheduler_gamma': 0.1
},
"load_model": wandb.config.load_model,
}
# log params to wandb
wandb.config.update(params["model"])
# initialize model
model, optimizer, initial_epoch = initialize_model(params)
wandb.watch(model, log_freq=1000)
# load dataset
dataset_train = load_processed_dataset(
paths[wandb.config.experiment]["datasets"]["train"], exp=wandb.config.experiment
)
dataloader_train = DataLoader(
dataset_train, batch_size=wandb.config.batch_size, shuffle=True, pin_memory=True
)
if args.eval_train:
evaluator_train = init_evaluator(
paths[wandb.config.experiment]["evaluators"]["train"],
device=params["model"]["device"],
)
if args.eval_test:
evaluator_test = init_evaluator(
paths[wandb.config.experiment]["evaluators"]["test"],
device=params["model"]["device"],
)
if args.eval_validation:
evaluator_validation = init_evaluator(
paths[wandb.config.experiment]["evaluators"]["validation"],
device=params["model"]["device"],
)
BCE_fn, MSE_fn = (
torch.nn.BCEWithLogitsLoss(reduction="none"),
torch.nn.MSELoss(reduction="none"),
)
total_epochs = wandb.config.epochs
epoch_save_all, epoch_save_partial = eval_log_freq(
total_epochs=total_epochs,
initial_epochs_lim=10,
initial_step_partial=1,
initial_step_all=1,
secondary_step_partial=10,
secondary_step_all=20,
only_final=args.only_final_eval,
)
ep = initial_epoch
for i in range(initial_epoch, total_epochs):
print(f"Epoch {ep}\n-------------------------------")
train_loop(
dataloader=dataloader_train,
groove_transformer=model,
encoder_only=wandb.config.encoder_only,
opt=optimizer,
epoch=ep,
loss_fn=calculate_loss,
bce_fn=BCE_fn,
mse_fn=MSE_fn,
device=params["model"]["device"],
test_inputs=evaluator_test.processed_inputs if args.eval_test else None,
test_gt=evaluator_test.processed_gt if args.eval_test else None,
validation_inputs=evaluator_validation.processed_inputs
if args.eval_validation
else None,
validation_gt=evaluator_validation.processed_gt
if args.eval_validation
else None,
hit_loss_penalty=wandb.config.hit_loss_penalty,
save=(ep in epoch_save_partial or ep in epoch_save_all),
)
print("-------------------------------\n")
# if ep in epoch_save_partial or ep in epoch_save_all:
if args.eval_train:
# evaluator_train._identifier = 'Train_Set_Epoch_{}'.format(ep)
evaluator_train._identifier = "Train_Set"
log_eval(
evaluator_train,
model,
log_media=ep in epoch_save_all,
epoch=ep,
dump=args.dump_eval,
)
if args.eval_test:
# evaluator_test._identifier = 'Test_Set_Epoch_{}'.format(ep)
evaluator_test._identifier = "Test_Set"
log_eval(
evaluator_test,
model,
log_media=ep in epoch_save_all,
epoch=ep,
dump=args.dump_eval,
)
if args.eval_validation:
# evaluator_test._identifier = 'Validation_Set_Epoch_{}'.format(ep)
evaluator_validation._identifier = "Validation_Set"
log_eval(
evaluator_validation,
model,
log_media=ep in epoch_save_all,
epoch=ep,
dump=args.dump_eval,
)
wandb.log({"epoch": ep}, commit=True)
ep += 1
wandb.finish()