-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathprocess_dataset.py
106 lines (87 loc) · 3.47 KB
/
process_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
import copy
import json
from dataset import (
GrooveMidiDatasetInfilling,
GrooveMidiDatasetInfillingSymbolic,
GrooveMidiDatasetInfillingRandom,
)
from preprocessed_dataset.Subset_Creators.subsetters import GrooveMidiSubsetter
## load dataset parameters and paths
with open("datasets/subset_info.json") as f:
subset_info = json.load(f)
with open("datasets/dataset_parameters.json") as f:
params = json.load(f)
# parse json values
for experiment in params.keys():
# load subset_info to params
params[experiment]["subset_info"] = subset_info
if "thres_range" in params[experiment]:
# convert thres range to tuple
params[experiment]["thres_range"] = (
params[experiment]["thres_range"][0],
params[experiment]["thres_range"][1],
)
if (
"voices_params" in params[experiment]
and params[experiment]["voices_params"]["k"] == "None"
):
params[experiment]["voices_params"]["k"] = None
def process_dataset(params, exp):
_, subset_list = GrooveMidiSubsetter(
pickle_source_path=params["subset_info"]["pickle_source_path"],
subset=params["subset_info"]["subset"],
hvo_pickle_filename=params["subset_info"]["hvo_pickle_filename"],
list_of_filter_dicts_for_subsets=[params["subset_info"]["filters"]],
).create_subsets()
if exp == "InfillingClosedHH_Symbolic":
_dataset = GrooveMidiDatasetInfillingSymbolic(data=subset_list[0], **params)
elif exp == "InfillingRandom" or exp == "InfillingRandomLow":
_dataset = GrooveMidiDatasetInfillingRandom(data=subset_list[0], **params)
else:
_dataset = GrooveMidiDatasetInfilling(data=subset_list[0], **params)
return _dataset
def load_processed_dataset(load_dataset_path, exp):
if exp == "InfillingClosedHH_Symbolic":
print("Loading GrooveMidiDatasetInfillingSymbolic...")
_dataset = GrooveMidiDatasetInfillingSymbolic(
load_dataset_path=load_dataset_path
)
elif exp == "InfillingRandom" or exp == "InfillingRandomLow":
print("Loading GrooveMidiDatasetInfillingRandom...")
_dataset = GrooveMidiDatasetInfillingRandom(load_dataset_path=load_dataset_path)
else:
print("Loading GrooveMidiDatasetInfilling...")
_dataset = GrooveMidiDatasetInfilling(load_dataset_path=load_dataset_path)
return _dataset
if __name__ == "__main__":
testing = False
# change experiment and split here
exps = [
"InfillingRandom",
"InfillingRandomLow",
"InfillingKicksAndSnares",
]
splits = ["train", "test", "validation"]
for exp in exps:
if testing:
params[exp]["subset_info"]["filters"]["master_id"] = [
"drummer9/session1/8",
"drummer9/session1/7",
"drummer9/session1/12",
]
params[exp]["dataset_name"] = params[exp]["dataset_name"] + "_testing"
params[exp]["save_dataset_path"] = (
"datasets/" + params[exp]["dataset_name"] + "/"
)
print(
"------------------------\n"
+ params[exp]["dataset_name"]
+ "\n------------------------\n"
)
for split in splits:
params_exp = copy.deepcopy(params[exp])
params_exp["split"] = split
params_exp["subset_info"]["subset"] = (
params_exp["subset_info"]["subset"] + split
)
process_dataset(params_exp, exp=exp)