forked from AI4Finance-Foundation/ElegantRL
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Tutorial.py
407 lines (330 loc) · 16 KB
/
Tutorial.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
import time
import numpy as np
import numpy.random as rd
import gym
import torch
import torch.nn as nn
class EvaluateRewardSV: # SV: Simplify Version. Only for tutorial.
def __init__(self, env):
self.env = env
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def get_eva_reward__sv(self, act, max_step, action_max, is_discrete, is_render=False):
reward_sum = 0
state = self.env.reset()
for _ in range(max_step):
states = torch.tensor((state,), dtype=torch.float32, device=self.device)
actions = act(states)
if is_discrete:
actions = actions.argmax(dim=1) # discrete action space
action = actions.cpu().data.numpy()[0]
next_state, reward, done, _ = self.env.step(action * action_max)
reward_sum += reward
if is_render: # open a window and show this env
self.env.render()
if done:
break
state = next_state
return reward_sum
class QNet(nn.Module): # class AgentQLearning
def __init__(self, state_dim, action_dim, mid_dim):
super().__init__()
self.net = nn.Sequential(nn.Linear(state_dim, mid_dim), nn.ReLU(),
nn.Linear(mid_dim, mid_dim), nn.ReLU(),
nn.Linear(mid_dim, action_dim), )
def forward(self, s):
q = self.net(s)
return q
class Actor(nn.Module):
def __init__(self, state_dim, action_dim, mid_dim):
super().__init__()
self.net = nn.Sequential(nn.Linear(state_dim, mid_dim), nn.ReLU(),
nn.Linear(mid_dim, mid_dim), nn.ReLU(),
nn.Linear(mid_dim, action_dim), nn.Tanh(), )
def forward(self, s):
a = self.net(s)
return a
class Critic(nn.Module): # 2020-05-05 fix bug
def __init__(self, state_dim, action_dim, mid_dim):
super().__init__()
self.net = nn.Sequential(nn.Linear(state_dim + action_dim, mid_dim), nn.ReLU(),
nn.Linear(mid_dim, mid_dim), nn.ReLU(),
nn.Linear(mid_dim, 1), )
def forward(self, s, a):
x = torch.cat((s, a), dim=1)
q = self.net(x)
return q
def soft_target_update(target, online, tau=5e-3):
for target_param, param in zip(target.parameters(), online.parameters()):
target_param.data.copy_(tau * param.data + (1.0 - tau) * target_param.data)
def run__tutorial_discrete_action():
"""It is a DQN tutorial, we need 1min for training.
This simplify DQN can't work well on harder task.
Other RL algorithms can work well on harder task but complicated.
You can change this code and make the training finish in (10 sec, 10k step) as an execrise.
"""
env_name = 'CartPole-v0' # a tutorial RL env. We need 10s for training.
env = gym.make(env_name) # an OpenAI standard env
state_dim = 4
action_dim = 2
action_max = int(1)
target_reward = 195.0
is_discrete = True
# from AgentRun import get_env_info
# state_dim, action_dim, max_action, target_reward, is_discrete = get_env_info(env, is_print=True)
# assert is_discrete is True # DQN is for discrete action space.
""" You will see the following:
| env_name: <CartPoleEnv<CartPole-v0>>, action space: Discrete
| state_dim: 4, action_dim: 2, action_max: 1, target_reward: 195.0
"""
''' I copy the code from AgentDQN to the following for tutorial.'''
net_dim = 2 ** 7 # the dimension (or width) of network
learning_rate = 2e-4 # learning rate for Adam Optimizer (ADAM = RMSProp + Momentum)
max_buffer = 2 ** 12 # the max storage number of replay buffer.
max_epoch = 2 ** 12 # epoch or episodes when training step
max_step = 2 ** 9 # the max step that actor interact with env before training critic
gamma = 0.99 # reward discount factor (gamma must less than 1.0)
batch_size = 2 ** 6 # batch_size for network training
criterion = torch.nn.MSELoss() # criterion for critic's q_value estimate
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # choose GPU or CPU automatically
''' QNet is an actor or critic? DQN is not a Actor-Critic Method.
AgentDQN chooses action with the largest q value outputing by Q_Network. Q_Network is an actor.
AgentDQN outputs q_value by Q_Network. Q_Network is also a critic.
'''
act = QNet(state_dim, action_dim, net_dim).to(device)
act.train()
act_optim = torch.optim.Adam(act.parameters(), lr=learning_rate)
act_target = QNet(state_dim, action_dim, net_dim).to(device)
act_target.load_state_dict(act.state_dict())
act_target.eval()
# from AgentRun import BufferList # simpler but slower
from AgentZoo import BufferArray # faster but a bit complicated
buffer = BufferArray(max_buffer, state_dim, action_dim=1) # experiment replay buffer, discrete action is an int
'''training loop'''
self_state = env.reset()
self_steps = 0 # steps of an episode
self_r_sum = 0.0 # sum of rewards of an episode with exploration
total_step = 0 # total step before training st0p
evaluator = EvaluateRewardSV(env) # SV: Simplify Version for tutorial
max_reward = evaluator.get_eva_reward__sv(act, max_step, action_max, is_discrete)
# the max r_sum without exploration
start_time = time.time()
for epoch in range(max_epoch):
'''update_buffer'''
explore_rate = 0.1 # explore rate when update_buffer(), epsilon-greedy
rewards = list()
steps = list()
for _ in range(max_step):
if rd.rand() < explore_rate: # epsilon-Greedy: explored policy for DQN
action = rd.randint(action_dim)
else:
states = torch.tensor((self_state,), dtype=torch.float32, device=device)
actions = act_target(states).argmax(dim=1).cpu().data.numpy() # discrete action space
action = actions[0]
next_state, reward, done, _ = env.step(action)
self_r_sum += reward
self_steps += 1
mask = 0.0 if done else gamma
buffer.add_memo((reward, mask, self_state, action, next_state))
self_state = next_state
if done:
rewards.append(self_r_sum)
self_r_sum = 0.0
steps.append(self_steps)
self_steps = 0
self_state = env.reset()
total_step += sum(steps)
avg_reward = np.average(rewards)
print(end=f'Reward:{avg_reward:6.1f} Step:{total_step:8} ')
'''update_parameters'''
loss_c_sum = 0.0
update_times = max_step
buffer.init_before_sample() # update the buffer.now_len
for _ in range(update_times):
with torch.no_grad():
rewards, masks, states, actions, next_states = buffer.random_sample(batch_size, device)
next_q_target = act_target(next_states).max(dim=1, keepdim=True)[0]
q_target = rewards + masks * next_q_target
act.train()
actions = actions.type(torch.long)
q_eval = act(states).gather(1, actions)
critic_loss = criterion(q_eval, q_target)
loss_c_sum += critic_loss.item()
act_optim.zero_grad()
critic_loss.backward()
act_optim.step()
soft_target_update(act_target, act, tau=5e-2)
# soft_target_update(act_target, act, tau=5e-3)
''' A small tau can stabilize training in harder env.
You can change tau into smaller tau 5e-3. But this env is too easy.
You can try the harder env and other DRL Algorithms in run__xx() in AgentRun.py
'''
# loss_a_avg = 0.0
loss_c_avg = loss_c_sum / update_times
print(end=f'Loss:{loss_c_avg:6.1f} ')
# evaluate the true reward of this agent without exploration
eva_reward_list = [evaluator.get_eva_reward__sv(act, max_step, action_max, is_discrete)
for _ in range(3)]
eva_reward = np.average(eva_reward_list)
print(f'TrueRewward:{eva_reward:6.1f}')
if eva_reward > max_reward:
max_reward = eva_reward
if max_reward > target_reward:
print(f"|\tReach target_reward: {max_reward:6.1f} > {target_reward:6.1f}")
break
used_time = int(time.time() - start_time)
print(f"|\tTraining UsedTime: {used_time}s")
'''open a window and show the env'''
for _ in range(4):
eva_reward = evaluator.get_eva_reward__sv(act, max_step, action_max, is_discrete, is_render=True)
print(f'|Evaluated reward is: {eva_reward}')
def run__tutorial_continuous_action():
"""It is a DDPG tutorial, we need about 300s for training.
I hate OU Process because of its lots of hyper-parameters. So this DDPG has no OU Process.
This simplify DDPG can't work well on harder task.
Other RL algorithms can work well on harder task but complicated.
You can change this code and make the training finish in 100s.
"""
env_name = 'Pendulum-v0' # a tutorial RL env. We need 300s for training.
env = gym.make(env_name) # an OpenAI standard env
state_dim = 3
action_dim = 1
action_max = 2.0
target_reward = -200.0
is_discrete = False
# from AgentRun import get_env_info
# state_dim, action_dim, max_action, target_reward, is_discrete = get_env_info(env, is_print=True)
# assert is_discrete is False # DDPG is for discrete action space.
""" You will see the following:
| env_name: <PendulumEnv<Pendulum-v0>>, action space: Continuous
| state_dim: 3, action_dim: 1, action_max: 2.0, target_reward: -200.0
"""
''' I copy the code from AgentDQN to the following for tutorial.'''
net_dim = 2 ** 5 # the dimension (or width) of network
learning_rate = 2e-4 # learning rate for Adam Optimizer (ADAM = RMSProp + Momentum)
max_buffer = 2 ** 14 # the max storage number of replay buffer.
max_epoch = 2 ** 12 # epoch or episodes when training step
max_step = 2 ** 8 # the max step that actor interact with env before training critic
gamma = 0.99 # reward discount factor (gamma must less than 1.0)
batch_size = 2 ** 7 # batch_size for network training
update_freq = 2 ** 7
criterion = torch.nn.SmoothL1Loss() # criterion for critic's q_value estimate
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # choose GPU or CPU automatically
act_dim = net_dim
act = Actor(state_dim, action_dim, act_dim).to(device)
act.train()
act_optim = torch.optim.Adam(act.parameters(), lr=learning_rate)
act_target = Actor(state_dim, action_dim, act_dim).to(device)
act_target.load_state_dict(act.state_dict())
act_target.eval()
cri_dim = int(net_dim * 1.25)
cri = Critic(state_dim, action_dim, cri_dim).to(device)
cri.train()
cri_optim = torch.optim.Adam(cri.parameters(), lr=learning_rate)
cri_target = Critic(state_dim, action_dim, cri_dim).to(device)
cri_target.load_state_dict(cri.state_dict())
cri_target.eval()
# from AgentRun import BufferList # simpler but slower
from AgentZoo import BufferArray # faster but a bit complicated
buffer = BufferArray(max_buffer, state_dim, action_dim) # experiment replay buffer
'''training loop'''
self_state = env.reset()
self_steps = 0 # the steps of an episode
self_r_sum = 0.0 # the sum of rewards of an episode with exploration
total_step = 0
explore_noise = 0.05
evaluator = EvaluateRewardSV(env) # SV: Simplify Version for tutorial
max_reward = evaluator.get_eva_reward__sv(act, max_step, action_max, is_discrete)
# the max r_sum without exploration
start_time = time.time()
while total_step < max_step: # collect buffer before training
for _ in range(max_step):
action = rd.uniform(-1, 1, size=action_dim)
next_state, reward, done, _ = env.step(action * action_max)
mask = 0.0 if done else gamma
buffer.add_memo((reward, mask, self_state, action, next_state))
total_step += 1
if done:
self_state = env.reset()
break
self_state = next_state
for epoch in range(max_epoch):
'''update_buffer'''
explore_rate = 0.5 # explore rate when update_buffer(), epsilon-greedy
reward_list = list()
step_list = list()
for _ in range(max_step):
states = torch.tensor((self_state,), dtype=torch.float32, device=device)
actions = act_target(states).cpu().data.numpy() # discrete action space
action = actions[0]
if rd.rand() < explore_rate:
action = rd.normal(action, explore_noise).clip(-1, +1)
next_state, reward, done, _ = env.step(action * action_max)
self_r_sum += reward
self_steps += 1
mask = 0.0 if done else gamma
buffer.add_memo((reward, mask, self_state, action, next_state))
self_state = next_state
if done:
reward_list.append(self_r_sum)
self_r_sum = 0.0
step_list.append(self_steps)
self_steps = 0
self_state = env.reset()
total_step += sum(step_list)
avg_reward = np.average(reward_list)
print(end=f'Reward:{avg_reward:8.1f} Step:{total_step:8} ')
'''update_parameters'''
loss_a_sum = 0.0
loss_c_sum = 0.0
update_times = max_step
buffer.init_before_sample() # update the buffer.now_len
for i in range(update_times):
for _ in range(2): # Two Time-scale Update Rule (TTUR)
with torch.no_grad():
reward, mask, state, action, next_state = buffer.random_sample(batch_size, device)
next_action = act_target(next_state)
next_q_target = cri_target(next_state, next_action)
q_target = reward + mask * next_q_target
q_eval = cri(state, action)
critic_loss = criterion(q_eval, q_target)
loss_c_sum += critic_loss.item()
cri_optim.zero_grad()
critic_loss.backward()
cri_optim.step()
action_pg = act(state) # policy gradient
actor_loss = -cri(state, action_pg).mean() # policy gradient
loss_a_sum += actor_loss.item()
act_optim.zero_grad()
actor_loss.backward()
act_optim.step()
'''soft target update'''
# soft_target_update(cri_target, cri, tau=5e-3)
# soft_target_update(act_target, act, tau=5e-3)
'''hard target update'''
if i % update_freq == 0:
cri_target.load_state_dict(cri.state_dict())
act_target.load_state_dict(act.state_dict())
loss_c_avg = loss_c_sum / (update_times * 2)
loss_a_avg = loss_a_sum / update_times
print(end=f'LossC:{loss_c_avg:6.1f} LossA:{loss_a_avg:6.1f} ')
# evaluate the true reward of this agent without exploration
eva_reward_list = [evaluator.get_eva_reward__sv(act, max_step, action_max, is_discrete)
for _ in range(3)]
eva_reward = np.average(eva_reward_list)
print(f'TrueRewward:{eva_reward:8.1f}')
if eva_reward > max_reward:
max_reward = eva_reward
if max_reward > target_reward:
print(f"|\tReach target_reward: {max_reward:6.1f} > {target_reward:6.1f}")
break
used_time = int(time.time() - start_time)
print(f"|\tTraining UsedTime: {used_time}s")
'''open a window and show the env'''
for _ in range(4):
eva_reward = evaluator.get_eva_reward__sv(act, max_step, action_max, is_discrete, is_render=True)
print(f'| Evaluated reward is: {eva_reward}')
if __name__ == '__main__':
# import os
# os.environ['CUDA_VISIBLE_DEVICES'] = '0'
run__tutorial_discrete_action()
# run__tutorial_continuous_action()