LangChain exercises. This repo contains all the lang_chain examples to create:
- AI agents
- RAG chatbots
- Automate tasks with AI
- Setup Environment
- Chat Models
- Prompt Templates
- Chains
- RAG (Retrieval-Augmented Generation)
- Agents & Tools
- Python 3.10 or 3.11
- Poetry (Follow this Poetry installation tutorial to install Poetry on your system)
-
Clone the repository:
<!-- TODO: UPDATE TO MY --> git clone https://github.com/bhancockio/langchain-crash-course cd langchain-crash-course
-
Install dependencies using Poetry:
poetry install --no-root
-
Set up your environment variables:
- Rename the
.env.example
file to.env
and update the variables inside with your own values. Example:
mv .env.example .env
- Rename the
-
Activate the Poetry shell to run the examples:
poetry shell
-
Run the code examples:
python 1_chat_models/1_chat_model_basic.py
Here's a breakdown of the folders and what you'll find in each:
1_chat_model_basic.py
2_chat_model_basic_conversation.py
3_chat_model_alternatives.py
4_chat_model_conversation_with_user.py
5_chat_model_save_message_history_firestore.py
Learn how to interact with models like ChatGPT, Claude, and Gemini.
1_prompt_template_basic.py
2_prompt_template_with_chat_model.py
Understand the basics of prompt templates and how to use them effectively.
1_chains_basics.py
2_chains_under_the_hood.py
3_chains_extended.py
4_chains_parallel.py
5_chains_branching.py
Learn how to create chains using Chat Models and Prompts to automate tasks.
1a_rag_basics.py
1b_rag_basics.py
2a_rag_basics_metadata.py
2b_rag_basics_metadata.py
3_rag_text_splitting_deep_dive.py
4_rag_embedding_deep_dive.py
5_rag_retriever_deep_dive.py
6_rag_one_off_question.py
7_rag_conversational.py
8_rag_web_scrape_firecrawl.py
8_rag_web_scrape.py
Explore the technologies like documents, embeddings, and vector stores that enable RAG queries.
1_agent_and_tools_basics.py
agent_deep_dive/
1_agent_react_chat.py
2_react_docstore.py
tools_deep_dive/
1_tool_constructor.py
2_tool_decorator.py
3_tool_base_tool.py
Learn about agents, how they work, and how to build custom tools to enhance their capabilities.
-
Watch the Video: Start by watching the LangChain Master Class for Beginners video on YouTube at 2X speed for a high-level overview.
-
Run the Code Examples: Follow along with the code examples provided in this repository. Each section in the video corresponds to a folder in this repo.
-
Join the Community: If you get stuck or want to connect with other AI developers, join the FREE Skool community here.
This project is licensed under the MIT License.